AI基础知识扫盲

AI基础知识扫盲

    • AIGC
    • Langchain--
    • LangGraph | 新手入门
    • RAG(Retrieval-Augmented Generation)检索增强生成
    • fastGPT

AIGC

AIGC是一种新的人工智能技术,它的全称是Artificial Intelligence Generative Content,即人工智能生成内容。
AIGC的4个主要特征
现阶段国内AIGC多以单模型应用的形式出现,主要分为文本生成、图像生成、视频生成、音频生成,其中文本生成成为其他内容生成的基础。

Langchain–

-知乎讲解
LangChain是一个开源框架,允许从事人工智能的开发者将例如GPT-4的大语言模型与外部计算和数据来源结合起来。该框架目前以Python或JavaScript包的形式提供。

Agents 主要包含以下的主要能力:

  • 内置 Tools
  • 内置组件
  • 自定义工具
    在这里插入图片描述

在这里插入图片描述

LangGraph | 新手入门

细讲

LangGraph 是在 LangChain 基础上的一个库,是 LangChain 的 LangChain Expression Language (LCEL)的扩展。能够利用有向无环图的方式,去协调多个LLM或者状态,使用起来比 LCEL 会复杂,但是逻辑会更清晰。
相当于一种高级的LCEL语言,值得一试。
LangGraph 中最基础的类型是 StatefulGraph,这种图就会在每一个Node之间传递不同的状态信息。然后每一个节点会根据自己定义的逻辑去更新这个状态信息。具体来说,可以继承 TypeDict 这个类去定义状态,下图我们就定义了有四个变量的信息。

  • input:这是输入字符串,代表用户的主要请求。
  • chat_history: 这是之前的对话信息,也作为输入信息传入.
  • agent_outcome: 这是来自代理的响应,可以是 AgentAction,也可以是 AgentFinish。如果是 AgentFinish,AgentExecutor 就应该结束,否则就应该调用请求的工具。
  • intermediate_steps: 这是代理在一段时间内采取的行动和相应观察结果的列表。每次迭代都会更新。

定义图中的节点
在LangGraph中,节点一般是一个函数或者langchain中runnable的一种类。

我们这里定义两个节点,agent和tool节点,其中

  • agent节点就是决定执行什么样的行动,
  • tool节点就是当agent节点选择执行某个行动时,去调用相应的工具。

此外,还需要定义节点之间的连接,也就是边。
**条件判断的边:**定义图的走向,比如Agent要采取行动时,就需要接下来调用tools,如果Agent说当前的的任务已经完成了,则结束整个流程。

普通的边:调用工具后,始终需要返回到Agent,让Agent决定下一步的行动
定义图
然后,我们就可以定义整个图了。值得注意的是,条件判断的边和普通的边添加方式是不一样的。

RAG(Retrieval-Augmented Generation)检索增强生成

RAG详写
预训练+微调
在这里插入图片描述

在 自然语言外理领域,大型语言模型依赖于提示词 (LLM)如GPT-3、BERT等已经取得了显著的进展,它们能够生成连贯、自然的文本,回答问题,并执行其他复杂的语言任务。然而,这些模型存在一些固有的局限性,如"模型幻觉问题”、“时效性问题”和“数据安全问题”。为了克服这些限制,检索增强生成(RAG)技术应运而生
RAG技术结合了大型语言模型的强大生成能力和检索系统的精确性。它允许模型在生成文本时,从外部知识库中检索相关信息,从而提高生成内容的准确性、相关性和时效性。这种方法不仅增强了模型的回答能力,还减少了生成错误信息的风险。

KBQA知识库问答

文本检索流程
步骤1(文本预处理):对原始文本进行清理和规范化(去除停用词、标点符号)文本统一转为小写。接着,采用词干化或词形还原等技术,将单词转换为基本形式,
步骤2(文本索引):构建倒排索引是文本检索的关键步骤。通过对文档集合进行分词,得到每个文档的词项列表,并为每个词项构建倒排列表,记录包含该词项的文档及其位置信息。这种结构使得在查询时能够快速找到包含查询词的文档,为后续的文本检索奠定了基础。
步骤3(文本检索):接下来是查询处理阶段,用户查询经过预处理后,与建立的倒排索引进行匹配。计算查询中每个词项的权重,并利用检索算法(如TFIDF或BM25)对文档进行排序,将相关性较高的文档排在前面。

fastGPT

FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排,从而实现复杂的问答场景!

FastGPT 在线使用:https://fastgpt.in

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/286593.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于SpringMVC返回JSON中时间对象序列化的问题

系列文章目录 文章目录 系列文章目录前言前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 首先要说明一点,SpringMVC进行JSON序列化处理时,使用的工具包是Jackson…

PointNet++论文复现(一)【PontNet网络模型代码详解 - 分类部分】

PontNet网络模型代码详解 - 分类部分 专栏持续更新中!关注博主查看后续部分! 分类模型的训练: ## e.g., pointnet2_ssg without normal features python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg python test_classification.py…

云电脑火爆出圈,如何选择和使用?--腾讯云、ToDesk云电脑、青椒云使用评测和攻略

前言: Hello大家好,我是Dream。在当下,科技的飞速发展已经深入影响着我们的日常生活,特别是随着物联网的兴起和5G网络的普及,云计算作为一个重要的技术概念也逐渐走进了我们的视野。云计算早已不再是一个陌生的名词&am…

Mysql配置autocommit实际使用(慎用)

以下内容都是基于MySQL5.7。所有操作建议在MySQL客户端执行。navicat可能会先意想不到的问题 在导入频繁执行update、insert的时候,可以考虑关闭MySQL的自动提交 首先查询当前的状态 1开启 0关闭 select autocommit;设置本次连接关闭自动提交(如果需要永久关闭请修…

MySQL的安装

第一步 先下载MySQL 的压缩包 官网链接: 点击跳转MySQL官网 或者直接下载我所上传的压缩包MySQL8.0.20X64 第二步 将下载的文件解压,我的解压位置为E:\Program Files目录,大家可以根据自己的需求解压到不同位置。如下图 第三步 进入到E:\Program Files…

导演、音乐家、艺术家眼中的Sora第一印象

自从2月16日Sora发布的那个夜晚以来,多少人都在翘首以盼,期待能真正的用上Sora。但是OpenAI自己也懂,基于模型对齐问题、安全问题、推理算力问题等等,这玩意短期内,基本不可能放出来给大众用。当然了,等以后…

【Linux】进程的基本概念(进程控制块,ps命令,top命令查看进程)

目录 01.进程的基本概念 程序与进程 进程的属性 02.进程控制块(PCB) task_struct的内容分类 组织进程 03.查看进程 ps命令 top指令 在计算机科学领域,进程是一项关键概念,它是程序执行的一个实例,是操作系统的…

如何保证缓存与数据库的双写一致性?

如何保证缓存与数据库的双写一致性? 概述同步策略更新缓存还是删除缓存:先操作数据库还是缓存:案例一、先删除缓存,在更新数据库案例二 先操作数据库,再删除缓存 延时双删策略(不推荐)使用分布式…

《数据安全技术 数据分类分级规则》及典型行业标准指南要点提炼

数据分类分级发布新国标 千呼万唤,国家标准GB/T 43697-2024《数据安全技术 数据分类分级规则》于3月21日正式发布。作为全国网络安全标准化技术委员会更名后,发布的第一部以“数据安全技术”命名的国家标准,《数据安全技术 数据分类分级规则…

K8s+Nacos实现应用的优雅上下线【生产实践】

文章目录 前言一、环境描述二、模拟请求报错三、配置优雅上下线1.修改nacos配置2.修改depolyment配置3.重新apply deployment后测试4.整体(下单)测试流程验证是否生效 四、期间遇到的问题 前言 我们在使用k8s部署应用的时候,虽然k8s是使用滚动升级的,先…

【CXL协议-事务层之CXL.cache (3)】

3.2 CXL.cache 3.2.1 概述 CXL.cache 协议将设备和主机之间的交互定义为许多请求,每个请求至少有一个关联的响应消息,有时还有数据传输。 该接口由每个方向的三个通道组成: 请求、响应和数据。 这些通道根据其方向命名,D2H&…

【笔记】深入理解JVM机制

🎥 个人主页:Dikz12📕格言:吾愚多不敏,而愿加学欢迎大家👍点赞✍评论⭐收藏 目录 JVM 运⾏流程图 JVM 中内存区域划分 方法区 / 元数据区 堆 栈 程序计数器 本地方法栈 内存区域总结 JVM 中类加载过程 …

Go第三方框架--gin框架(一)

序言 Gin框架作为go语言使用最多的web框架,以其快速的响应速度和对复杂http路由配置的支持受到程序员和媛们的喜爱,几乎统治了web市场。但作为一名合格的程序员,要知其然更要知其所以然,不然八股文背的也没有啥意思。本着这个原则…

【Java程序设计】【C00368】基于(JavaWeb)Springboot的箱包存储系统(有论文)

TOC 博主介绍:java高级开发,从事互联网行业六年,已经做了六年的毕业设计程序开发,开发过上千套毕业设计程序,博客中有上百套程序可供参考,欢迎共同交流学习。 项目简介 项目获取 🍅文末点击卡片…

【MySQL数据库】数据类型和简单的增删改查

目录 数据库 MySQL的常用数据类型 1.数值类型: 2.字符串类型 3.日期类型 MySQL简单的增删改查 1.插入数据: 2.查询数据: 3.修改语句: 4.删除语句: 数据库 平时我们使用的操作系统都把数据存储在文件中&#…

3.3 数据定义 数据库与系统概论

目录 3.3.1 模式的定义与删除 1. 定义模式 2. 删除模式 CASCADE(级联) RESTRICT(限制) 3.3.2 基本表的定义、删除与修改 表的定义 2.数据类型 3. 模式与表 4. 修改基本表 5. 删除基本表 3.3.3 索引的建立与删除 1. …

如何备考2024年AMC10:吃透2000-2023年1250道真题(限时免费送)

我们今天继续来随机看5道AMC10真题,以及详细解析,这些题目来自1250道完整的官方历年AMC10真题库。通过系统研究和吃透AMC10的历年真题,参加AMC10的竞赛就能拿到好名次。即使不参加AMC10竞赛,掌握了这些知识和解题思路后初中和高中…

2015年认证杯SPSSPRO杯数学建模C题(第一阶段)荒漠区动植物关系的研究全过程文档及程序

2015年认证杯SPSSPRO杯数学建模 C题 荒漠区动植物关系的研究 原题再现: 环境与发展是当今世界所普遍关注的重大问题, 随着全球与区域经济的迅猛发展, 人类也正以前所未有的规模和强度影响着环境、改变着环境, 使全球的生命支持系统受到了严重创伤, 出现了全球变暖…

Flutter 旋转动画 线性变化的旋转动画

直接上代码 图片自己添加一张就好了 import dart:math;import package:flutter/material.dart;import package:flutter/animation.dart;void main() > runApp(MyApp()); //旋转动画 class MyApp extends StatelessWidget {overrideWidget build(BuildContext context) {re…

RMAN 备份恢复、删除归档

RMAN冷备全库 rman target / list backup shutdown immediate startup mount #不要自动备份control file set nocfau; #注意要先备份数据库,然后备份控制文件,因为数据库的备份位置记录在控制文件中。 #备份数据库 backup database format /mnt/disk01/r…