STM32技术打造:智能考勤打卡系统 | 刷卡式上下班签到自动化解决方案

文章目录

  • 一、简易刷卡式打卡考勤系统
      • (一)功能简介
      • 原理图设计
      • 程序设计

在这里插入图片描述
哔哩哔哩:
https://www.bilibili.com/video/BV1NZ421Y79W/?spm_id_from=333.999.0.0&vd_source=e5082ef80535e952b2a4301746491be0

一、简易刷卡式打卡考勤系统

(一)功能简介

1、材料:STM32F103C8T6、MFR522、O.96寸OLED、4个按键

2、功能:
①初始化管理员卡片,请放入管理员卡片

②进入管理界面,按键可以选择录入新员工、删除员工、更换管理员卡片、设置时间、设置上下班时间、查看考勤信息、恢复出厂设置等功能

③管理界面可以查看考勤信息

④退出管理界面后到正常界面,正常界面显示时间,有员工刷卡显示“员工X 早上好\中午好\下午好\晚上好\辛苦了”等字样

原理图设计

采用最普遍的STM32F103C8T6便宜好用又稳定
在这里插入图片描述

下载接口用排针
在这里插入图片描述

这次用TYPEC来供电5V,一看充电器9V12V不要慌,接上没带协议的设备是通通都5V。只要能接就不会爆炸。
在这里插入图片描述

5V转3.3降压采用降压芯片AMS1117C33电流大稳定可靠
在这里插入图片描述

用RFID射频卡来刷卡打卡
在这里插入图片描述

采用7针SPI OLED显示 ,屏幕是单色128*64分辨率
在这里插入图片描述
按键用来设置信息
在这里插入图片描述
蜂鸣器用来提示打卡成功或者失败
在这里插入图片描述

程序设计

这段代码是主程序,包含了初始化和主循环部分。在初始化部分,
程序设置了延时函数、NVIC中断分组、串口、OLED显示屏、蜂鸣器和实时时钟(RTC)。
主循环中,程序根据系统标志位sysFlag.DisMain的值来执行不同的任务,如锁定界面、
管理员界面和解锁界面的任务。


#include "main.h"  // 包含主程序的头文件
#include <string.h>  // 包含字符串处理函数// 系统参数结构体
SysTemPat sys;
// 系统标志位定义
SysflagTypedef sysFlag;// 函数声明
void Display_Data(void);  // 显示时间的函数
void starting(void);     // 开机界面信息的函数
u8 MFRC522_lock(void);   // 刷卡功能的函数
u8 Add_Rfid(void);      // 录入RFID的函数
u8 Delt_Rfid(void);     // 删除RFID的函数
void Set_Time(void);     // 设置时间的函数
void Massige(void);      // 信息提示的函数
void SysPartInit(void);  // 系统参数初始化的函数// 主函数
int main(void)
{//初始化延时函数delay_init();     // 设置NVIC中断分组为2:2位抢占优先级,2位响应优先级NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); // 初始化串口,波特率为115200uart_init(115200);	printf("串口功能正常\r\n"); // 初始化按键KEY_Init();// 初始化OLED显示屏OLED_Init();  // 清除OLED显示屏OLED_Clear();  // 初始化蜂鸣器BEEP_Init();    // 显示开机信息starting();// 初始化RTC(实时时钟)RTC_Init();// 初始化系统参数SysPartInit();   // 主循环while(1){// 根据系统标志位sysFlag.DisMain的值执行不同的任务switch(sysFlag.DisMain){case DIS_MAIN:   main_task();  break;  // 执行锁定界面任务case DIS_MANAGE: manage_task();  break;  // 执行管理员界面任务case DIS_INFO:   info_task();  break;  // 执行解锁界面任务}}
}

使用删除数组并前移的方式来删除指定的员工

// 删除数组中的指定元素,并将后续元素前移
void deleteAndShift_card(int indexToDelete) {int i, j;if (indexToDelete >= 0 && indexToDelete <= sys.userNum) {// 从要删除的元素开始,将后续元素前移for ( i = indexToDelete; i < sys.userNum; i++) {memcpy(sys.cardid[i],sys.cardid[i+1],5);}} else {printf("索引无效。\n");}
}
// 删除数组中的指定元素,并将后续元素前移
void deleteAndShift_user(int indexToDelete) {int i, j;if (indexToDelete >= 0 && indexToDelete <= sys.userNum) {// 从要删除的元素开始,将后续元素前移for ( i = indexToDelete; i < sys.userNum; i++) {memcpy(&sys.user[i],&sys.user[i+1],sizeof(sys.user[0]));}} else {printf("索引无效。\n");}
}

主界面显示任务


void main_task(void)
{
#define DATA_TIME 100
#define KEY_TIME 10
#define RC522_TIME 300static u32 scan_time = 0;u8 key_num;scan_time++; //扫描计数if(scan_time % DATA_TIME == 1) {Display_Data();//时间显示:每1000ms更新一次显示数据if(sysFlag.DisFlag == 1){sysFlag.DisFlag = 0;OLED_Refresh_Gram();//更新显示}}//MFRC522解锁if(scan_time % RC522_TIME == 1) {u8 ret =  MFRC522_lock();if(ret == 0)//MFRC522解锁{sysFlag.DisMain = DIS_MANAGE; //跳到管理界面}}key_num = KEY_Scan(0);if(key_num){dis_info((u8*)"请刷卡打卡!",3000);}delay_ms(1);
}

管理员模式任务


void manage_task(void)
{static char arrow = 0; //箭头位子static u32 scan_time = 0;static u8 dis_first = 1;u8 key_num = 0;if(dis_first){dis_first = 0;OLED_Clear_NOupdate();Dis_SysSetup(arrow);}//超时scan_time++;//功能选项选择key_num = KEY_Scan(0);if(scan_time > 30000 | key_num == KEY2_PRES) {scan_time = 0;sysFlag.DisMain = DIS_MAIN; //跳到锁定界面dis_first = 1;}if(key_num){scan_time = 0;if(key_num == KEY0_PRES) {if(arrow > 0)arrow--;}if(key_num == KEY1_PRES) {if(arrow < MAX_SYS_PARA_NUM - 1)arrow++;}Dis_SysSetup(arrow);if(key_num == KEY3_PRES) {switch(arrow){case ADD_RFID:Add_Rfid();break;//录入新员工case DEL_RFID:Delt_Rfid();break;//删除员工case MOD_MANG_PSWD:SetManage();break;//更换管理员卡片case MOD_TIMES:Set_Time();break;//设置时case MOD_WORK_TIMES:Set_WorkTime();break;  //设置上下班时间case READ_SYS_INFO://查看考勤信息Read_ColokinInfo();break;case FACTORY_RESET://恢复出厂设置set_facory_reset();break;}dis_first = 1;}}delay_ms(1);
}

系统参数结构体

typedef struct 
{u32 HZCFlag;u8  cardid[MAXRFIDNUM][CARID_LENGTH];u8  errCnt;//错误计数u8  errTime;//等待错误时间u16  userNum;//员工人数_time_obj sb_time;	//上班时间_time_obj xb_time;  //下班时间_user_obj user[MAXRFIDNUM];		
}SysTemPat;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/287449.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker拉取镜像

docker 拉取镜像 命令格式 docker pull 仓库名称[:标签] 从下载过程可以看出&#xff1a; &#xff08;1&#xff09;镜像文件是由若干层组成&#xff0c;即&#xff1a;AUFS联合文件系统。这是实现增量保存与更新的基础 &#xff08;2&#xff09;下载过程会输出各层镜像的信…

界面控件DevExpress WinForms/WPF v23.2 - 电子表格支持表单控件

DevExpress WinForm拥有180组件和UI库&#xff0c;能为Windows Forms平台创建具有影响力的业务解决方案。DevExpress WinForm能完美构建流畅、美观且易于使用的应用程序&#xff0c;无论是Office风格的界面&#xff0c;还是分析处理大批量的业务数据&#xff0c;它都能轻松胜任…

String类(三)

文章目录 string类&#xff08;三&#xff09;string类的模拟实现&#xff1a;1.默认成员变量和函数2.string的长度和下表引用3.字符串拷贝构造4. 赋值拷贝5.字符串比较6.字符串的增添操作7.insert插入操作8.遍历字符 string类&#xff08;三&#xff09; string类的模拟实现&…

Django(二)-搭建第一个应用(1)

一、项目环境和结构 1、项目环境 2、项目结构 二、编写项目 1、创建模型 代码示例: import datetimefrom django.db import models from django.utils import timezone# Create your models here.class Question(models.Model):question_text models.CharField(max_length2…

ES6 基础

文章目录 1. 初识 ES62. let 声明变量3. const 声明常量4. 解构赋值 1. 初识 ES6 ECMAScript6.0(以下简称ES6)是JavaScript语言的下一代标准&#xff0c;已经在2015年6月正式发布了。它的目标&#xff0c;是使得」JavaScript语言可以用来编写复杂的大型应用程序&#xff0c;成为…

【环境配置】Ubuntu MySQL 8.0.28 安装并允许外部客户端连接

文章目录 MySQL 安装步骤配置 MySQL Server 允许外部连接 MySQL 安装步骤 步骤一&#xff1a;在 MySQL 官网找到 apt 仓库&#xff0c;下载最新的仓库 点击 Download&#xff1a; 输入如下命令&#xff1a; sudo wget -c https://dev.mysql.com/get/mysql-apt-config_0.8…

Java拆装箱及128陷阱

有以下一段代码&#xff1a; Integer a 123; Integer b 123; int c 123; int d 123; System.out.println(c d); System.out.println(a b); System.out.println(a c); 这段代码运行的结果是什么呢&#xff1f; c d 一定为True。 由于Java中存在自动拆装箱&#xff0…

【Spring】Spring框架中的一个核心接口ApplicationContext 简介,以及入口 Run() 的源码分析

一、简介 ApplicationContext 是Spring框架中的一个核心接口&#xff0c;它是Spring IoC容器的实现之一&#xff0c;用于管理和组织应用程序中的各种Bean&#xff0c;同时提供了一系列功能来支持依赖注入、AOP等特性。 简单来说&#xff0c;ApplicationContext 是一个大型的、…

如何备考2025年AMC8竞赛?吃透2000-2024年600道真题(免费送题)

最近有家长朋友问我&#xff0c;现在有哪些类似于奥数的比赛可以参加&#xff1f;我的建议可以关注下AMC8的竞赛&#xff0c;类似于国内的奥数&#xff0c;但是其难度要比国内的奥数低一些&#xff0c;而且比赛门槛更低&#xff0c;考试也更方便。比赛的题目尤其是应用题比较有…

FPGA之组合逻辑与时序逻辑

数字逻辑电路根据逻辑功能的不同&#xff0c;可以分成两大类&#xff1a;组合逻辑电路和时序逻辑电路&#xff0c;这两种电路结构是FPGA编程常用到的&#xff0c;掌握这两种电路结构是学习FPGA的基本要求。 1.组合逻辑电路 组合逻辑电路概念&#xff1a;任意时刻的输出仅仅取决…

2015年认证杯SPSSPRO杯数学建模B题(第一阶段)替换式密码全过程文档及程序

2015年认证杯SPSSPRO杯数学建模 B题 替换式密码 原题再现&#xff1a; 历史上有许多密码的编制方法。较为简单的是替换式密码&#xff0c;也就是将文中出现的字符一对一地替换成其它的符号。对拼音文字而言&#xff0c;最简单的形式是单字母替换加密&#xff0c;也就是以每个…

小迪安全48WEB 攻防-通用漏洞Py 反序列化链构造自动审计 bandit魔术方法

#知识点&#xff1a; 1、Python-反序列化函数使用 2、Python-反序列化魔术方法 3、Python-反序列化 POP 链构造&#xff08;payload构造&#xff09; 4、Python-自动化审计 bandit 使用 #前置知识&#xff1a; 函数使用&#xff1a; pickle.dump(obj, file) : 将对…

pycharm使用远程服务器的jupyter环境

1、确保服务器上安装了jupyter,如果没有&#xff0c;执行下面命令安装 pip install jupyter2、启动jupyter notebook服务 jupyter notebook --no-browser --port8888 --ip0.0.0.0 --allow-root表明在服务器的8888 端口上启动 Jupyter Notebook&#xff0c;并允许从任何 IP 地…

caffe | 使用caffe SSD制作VOC07112 lmdb数据集

git clone -b ssd https://github.com/weiliu89/caffe.git caffe_ssdcd caffe_ssdcp caffe/Makefile.config caffe_ssd/# 把 cuda 和 cudnn 关了&#xff0c;用 cpu 版本的就好了 make -j32 make pycaffemake test -j8 make runtest -j8 vim ~/.bashrc# 加入 export LD_LIBRAR…

亮数据代理IP轻松解决爬虫数据采集痛点

文章目录 一、爬虫数据采集痛点二、为什么使用代理IP可以解决&#xff1f;2.1 爬虫和代理IP的关系2.2 使用代理IP的好处 三、亮数据代理IP的优势3.1 IP种类丰富3.1.1 动态住宅代理IP3.1.2 静态住宅代理IP3.1.3 机房代理IP3.1.4 移动代理IP 3.2 高质量IP全球覆盖3.3 超级代理服务…

达梦DEM部署说明-详细步骤-DM8达梦数据库

DMDEM部署说明-详细步骤-DM8达梦数据库 环境介绍1 部署DM8 数据库 1.1 创建一个数据库作为DEM后台数据库1.2 创建数据库用户 DEM1.3 使用DEM用户导入dem_init.sql 2 配置tomcat 2.1 配置/tomcat/conf/server.xml2.2 修改jvm启动参数 3 配置JAVA 1.8及以上版本的运行时环境 3.1…

线性数据结构----(数组,链表,栈,队列,哈希表)

线性数据结构 数组链表栈使用场景 队列应用场景 哈希表特点哈希函数&#xff0c;哈希值&#xff0c;哈希冲突键值对 Entry 开放寻址法和拉链法 参考文档 数组 数组(Array) 是一种很常见的数据结构。由相同类型的元素组成&#xff0c;并且是使用一块连续的内存来存储的。 在数组…

【二】TensorFlow神经网络模型构建之卷积函数

卷积函数是构建神经网络的重要支架&#xff0c;是在一批图像上扫描的二维过滤器。 tf.nn.convolution(input,filter,padding,stridesNone,dilation_rateNone,nameNone,data_formatNone)该函数计算N维卷积的和。tf.nn.conv2d(input,filter,padding,strides,use_cudnn_on_gpuNon…

java算法第31天 | 贪心算法 part01 ● 理论基础 ● 455.分发饼干 ● 376. 摆动序列 ● 53. 最大子序和

理论基础 贪心算法没有固定的套路&#xff0c;贪心的本质是选择每一阶段的局部最优&#xff0c;从而达到全局最优。 贪心算法一般分为如下四步&#xff1a; 将问题分解为若干个子问题 找出适合的贪心策略 求解每一个子问题的最优解 将局部最优解堆叠成全局最优解 这个四步其…

分布式系统面试全集通第一篇(dubbo+redis+zookeeper----分布式+CAP+BASE+分布式事务+分布式锁)

目录 分布式系统面试全集通第一篇什么是分布式?和微服务的区别什么是分布式分布式与微服务的区别 什么是CAP?为什么不能三者同时拥有分区容错性一致性可用性 Base理论了解吗基本可用软状态最终一致性 什么是分布式事务分布式事务有哪些常见的实现方案?2PC&#xff08;Two Ph…