Redis相关面试题

Redis相关面试题

在这里插入图片描述

缓存三剑客

面试官:什么是缓存穿透 ? 怎么解决 ?

缓存穿透是指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致 DB 挂掉。这种情况大概率是遭到了攻击。

解决方案的话:

  1. 缓存空对象(实现简单,维护方便),但是会有额外的内存消耗,可以设置合理的TTL,数据可能不一致
  2. 布隆过滤器

面试官:好的,你能介绍一下布隆过滤器吗?

布隆过滤器主要是用于检索一个元素是否在一个集合中。我们当时使用的是redisson实现的布隆过滤器。

它的底层主要是先去初始化一个比较大数组,里面存放的二进制0或1。在一开始都是0,当一个key来了之后经过3次hash计算,模于数组长度找到数据的下标然后把数组中原来的0改为1,这样的话,三个数组的位置就能标明一个key的存在。查找的过程也是一样的。

当然是有缺点的,布隆过滤器有可能会产生一定的误判,我们一般可以设置这个误判率,大概不会超过5%,其实这个误判是必然存在的,要不就得增加数组的长度,其实已经算是很划分了,5%以内的误判率一般的项目也能接受,不至于高并发下压倒数据库。

面试官:什么是缓存击穿 ? 怎么解决 ?

热点key问题:一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。

解决方案有两种方式:

  1. 互斥锁:当缓存失效时,线程1先获取一个互斥锁,查询数据库实现缓存重建,此时其他线程获取不到锁只能休眠再重试,最后缓存重建完成后,其他线程可以查到缓存。

    在这里插入图片描述

  2. 逻辑过期:

    在这里插入图片描述

    1. 在设置key的时候,设置一个过期时间字段一块存入缓存中,不给当前key设置过期时间
    2. 当查询的时候,从redis取出数据后判断时间是否过期
    3. 如果过期则开通另外一个线程进行数据同步,当前线程正常返回数据,这个数据不是最新

当然两种方案各有利弊:

  • 强一致性:分布式锁的方案,性能上可能没那么高,锁需要等,也有可能产生死锁的问题
  • 高可用性:逻辑删除,则优先考虑的高可用性,性能比较高,但是数据同步这块做不到强一致。

面试官:什么是缓存雪崩 ? 怎么解决 ?

存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

与缓存击穿的区别:雪崩是很多key,击穿是某一个key缓存。

解决方案:

  • 给不同的Key的TTL添加随机值
  • 利用Redis集群提高服务的可用性
  • 给缓存业务添加降级限流策略
  • 给业务添加多级缓存

**面试官:**缓存的淘汰策略

  • 内存淘汰(redis会自动将一些不常用的缓存清理)
  • 超时剔除(超过了TTL,会自动清理)
  • 主动更新(主动删除缓存)

数据库缓存不一致

面试官:redis做为缓存,mysql的数据如何与redis进行同步呢?(双写一致性)

性能高,数据不是强一致:我们当时是把商铺的热点数据存入到了缓存中,虽然是热点数据,但是实时要求性并没有那么高,所以,我们当时采用的延迟双删。

性能低,数据强一致:我们当时是把抢券的库存存入到了缓存中,这个需要实时的进行数据同步,为了保证数据的强一致,我们当时采用的是redisson提供的读写锁来保证数据的同步。

延迟双删:不能保证强一致,有脏数据的风险

在这里插入图片描述

  1. 不论先删除哪个都有脏数据的风险
  2. 所以要删除两次缓存就是为了降低脏数据的风险
  3. 延迟删除,因为数据库是主从模式,读写是分离的,延时一会让主节点把数据同步到从节点

分布式锁:保证强一致,但是性能低。

在这里插入图片描述

共享锁:读锁readLock,加锁之后,其他线程可以共享读操作
排他锁:独占锁writeLock也叫,加锁之后,阻塞其他线程读写操作

异步通知:保证数据最终一致性。

在这里插入图片描述

持久化

面试官:redis做为缓存,数据的持久化是怎么做的?

在Redis中提供了两种数据持久化的方式:1、RDB 2、AOF

面试官:这两种持久化方式有什么区别呢?

RDB是一个快照文件,它是把redis内存存储的数据写到磁盘上,当redis实例宕机恢复数据的时候,方便从RDB的快照文件中恢复数据。

AOF的含义是追加文件,当redis操作写命令的时候,都会存储这个文件中,当redis实例宕机恢复数据的时候,会从这个文件中再次执行一遍命令来恢复数据。

面试官:这两种方式,哪种恢复的比较快呢?

RDB因为是二进制文件,在保存的时候体积也是比较小的,它恢复的比较快,但是它有可能会丢数据,我们通常在项目中也会使用AOF来恢复数据,虽然AOF恢复的速度慢一些,但是它丢数据的风险要小很多,在AOF文件中可以设置刷盘策略,我们当时设置的就是每秒批量写入一次命令

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

在这里插入图片描述

数据过期策略

面试官:假如redis的key过期之后,会立即删除吗?

惰性删除:在设置该key过期时间后,我们不去管它,当使用key时,再检查其是否过期,如果过期就删掉它,反之返回该key。

定期删除:每隔一段时间,我们就对一些key进行检查,删除里面过期的key。

定期清理的两种模式:

  • SLOW模式是定时任务,执行频率默认为10hz,每次不超过25ms,以通过修改配置文件redis.conf 的 hz 选项来调整这个次数
  • FAST模式执行频率不固定,每次事件循环会尝试执行,但两次间隔不低于2ms,每次耗时不超过1ms

Redis的过期删除策略:惰性删除 + 定期删除两种策略进行配合使用。

数据淘汰策略

面试官:假如缓存过多,内存是有限的,内存被占满了怎么办?

嗯,这个在redis中提供了很多种,默认是noeviction,不删除任何数据,内部不足直接报错

是可以在redis的配置文件中进行设置的,里面有两个非常重要的概念,一个是LRU,另外一个是LFU

LRU:最少最近使用,用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。

LFU:最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高

面试官:数据库有1000万数据,Redis只能缓存20w数据,如何保证Redis中的数据都是热点数据 ?

可以使用 allkeys-lru (挑选最近最少使用的数据淘汰)淘汰策略,那留下来的都是经常访问的热点数据

面试官:Redis的内存用完了会发生什么?

这个要看redis的数据淘汰策略是什么,如果是默认的配置,redis内存用完以后则直接报错。我们当时设置的 allkeys-lru 策略。把最近最常访问的数据留在缓存中。

Redis分布式锁

面试官:Redis分布式锁如何实现 ?

嗯,在redis中提供了一个命令setnx(SET if not exists)

由于redis的单线程的,用了命令之后,只能有一个客户端对某一个key设置值,在没有过期或删除key的时候是其他客户端是不能设置这个key的

面试官:好的,那你如何控制Redis实现分布式锁有效时长呢?

的确,redis的setnx指令不好控制这个问题,我们当时采用的redis的一个框架redisson实现的。

在redisson中需要手动加锁,并且可以控制锁的失效时间和等待时间,当锁住的一个业务还没有执行完成的时候,在redisson中引入了一个看门狗机制,就是说每隔一段时间就检查当前业务是否还持有锁,如果持有就增加加锁的持有时间,当业务执行完成之后需要使用释放锁就可以了

还有一个好处就是,在高并发下,一个业务有可能会执行很快,先客户1持有锁的时候,客户2来了以后并不会马上拒绝,它会自旋不断尝试获取锁,如果客户1释放之后,客户2就可以马上持有锁,性能也得到了提升。

面试官:好的,redisson实现的分布式锁是可重入的吗?

是可以重入的。这样做是为了避免死锁的产生。这个重入其实在内部就是判断是否是当前线程持有的锁,如果是当前线程持有的锁就会计数,如果释放锁就会在计算上减一。在存储数据的时候采用的hash结构,大key可以按照自己的业务进行定制,其中小key是当前线程的唯一标识,value是当前线程重入的次数。

面试官:redisson实现的分布式锁能解决主从一致性的问题吗?

这个是不能的,比如,当线程1加锁成功后,master节点数据会异步复制到slave节点,此时当前持有Redis锁的master节点宕机,slave节点被提升为新的master节点,假如现在来了一个线程2,再次加锁,会在新的master节点上加锁成功,这个时候就会出现两个节点同时持有一把锁的问题。

我们可以利用redisson提供的红锁来解决这个问题,它的主要作用是,不能只在一个redis实例上创建锁,应该是在多个redis实例上创建锁,并且要求在大多数redis节点上都成功创建锁,红锁中要求是redis的节点数量要过半。这样就能避免线程1加锁成功后master节点宕机导致线程2成功加锁到新的master节点上的问题了。

但是,如果使用了红锁,因为需要同时在多个节点上都添加锁,性能就变的很低了,并且运维维护成本也非常高,所以,我们一般在项目中也不会直接使用红锁,并且官方也暂时废弃了这个红锁

面试官:好的,如果业务非要保证数据的强一致性,这个该怎么解决呢?

redis本身就是支持高可用的,做到强一致性,就非常影响性能,所以,如果有强一致性要求高的业务,建议使用zookeeper实现的分布式锁,它是可以保证强一致性的。

Redis集群

面试官:Redis集群有哪些方案, 知道嘛 ?

在Redis中提供的集群方案总共有三种:主从复制、哨兵模式、Redis分片集群

面试官:那你来介绍一下主从同步

是这样的,单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,可以搭建主从集群,实现读写分离。一般都是一主多从,主节点负责写数据,从节点负责读数据,主节点写入数据之后,需要把数据同步到从节点中。

面试官:能说一下,主从同步数据的流程?

主从同步分为了两个阶段,一个是全量同步,一个是增量同步

全量同步是指从节点第一次与主节点建立连接的时候使用全量同步,流程是这样的:

在这里插入图片描述

第一:从节点请求主节点同步数据,其中从节点会携带自己的replication id和 offset 偏移量。

第二:主节点判断是否是第一次请求,主要判断的依据就是,主节点与从节点是否是同一个replication id,如果不是,就说明是第一次同步,那主节点就会把自己的replication id和offset发送给从节点,让从节点与主节点的信息保持一致。

第三:在同时主节点会执行bgsave,生成rdb文件后,发送给从节点去执行,从节点先把自己的数据清空,然后执行主节点发送过来的rdb文件,这样就保持了一致

当然,如果在rdb生成执行期间,依然有请求到了主节点,而主节点会以命令的方式记录到缓冲区,缓冲区是一个日志文件,最后把这个日志文件发送给从节点,这样就能保证主节点与从节点完全一致了,后期再同步数据的时候,都是依赖于这个日志文件,这个就是全量同步

增量同步流程

在这里插入图片描述

当从节点服务重启之后,数据就不一致了,所以这个时候,从节点会请求主节点同步数据,主节点还是判断不是第一次请求,不是第一次就获取从节点的offset值,然后主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步。

Redis的高并发高可用

面试官:怎么保证Redis的高并发高可用

首先可以搭建主从集群,再加上使用redis中的哨兵模式,哨兵模式可以实现主从集群的自动故障恢复(对主从服务的监控、自动故障恢复、通知);如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主;同时Sentinel也充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端,所以一般项目都会采用哨兵的模式来保证redis的高并发高可用。

面试官:你们使用redis是单点还是集群,哪种集群

我们当时使用的是主从(1主1从)加哨兵。一般单节点不超过10G内存,如果Redis内存不足则可以给不同服务分配独立的Redis主从节点。尽量不做分片集群。因为集群维护起来比较麻烦,并且集群之间的心跳检测和数据通信会消耗大量的网络带宽,也没有办法使用lua脚本和事务。

面试官:redis集群脑裂,该怎么解决呢?

有的时候由于网络等原因可能会出现脑裂的情况,就是说,由于redis master节点和redis salve节点和sentinel处于不同的网络分区,使得sentinel没有能够心跳感知到master,所以通过选举的方式提升了一个salve为master,这样就存在了两个master,就像大脑分裂了一样,这样会导致客户端还在old master那里写入数据,新节点无法同步数据,当网络恢复后,sentinel会将old master降为salve,这时再从新master同步数据,这会导致old master中的大量数据丢失。

关于解决的话,我记得在redis的配置中可以设置:第一可以设置最少的salve节点个数,比如设置至少要有一个从节点才能同步数据,第二个可以设置主从数据复制和同步的延迟时间,达不到要求就拒绝请求,就可以避免大量的数据丢失。

redis的分片集群

面试官:redis的分片集群有什么作用?

分片集群主要解决的是,海量数据存储的问题,集群中有多个master,每个master保存不同数据,并且还可以给每个master设置多个slave节点,就可以继续增大集群的高并发能力。同时每个master之间通过ping监测彼此健康状态,就类似于哨兵模式了。当客户端请求可以访问集群任意节点,最终都会被转发到正确节点。

面试官:Redis分片集群中数据是怎么存储和读取的?

Redis 集群引入了哈希槽的概念,有 16384 个哈希槽,集群中每个主节点绑定了一定范围的哈希槽范围, key通过 CRC16 校验后对 16384 取模来决定放置哪个槽,通过槽找到对应的节点进行存储。

取值的逻辑是一样的

Redis是单线程

面试官:Redis是单线程的,但是为什么还那么快?

1、完全基于内存的,C语言编写

2、采用单线程,避免不必要的上下文切换可竞争条件

3、使用多路I/O复用模型,非阻塞IO

例如:bgsave 和 bgrewriteaof 都是在后台执行操作,不影响主线程的正常使用,不会产生阻塞

面试官:能解释一下I/O多路复用模型?

I/O多路复用是指利用单个线程来同时监听多个Socket ,并在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。目前的I/O多路复用都是采用的epoll模式实现,它会在通知用户进程Socket就绪的同时,把已就绪的Socket写入用户空间,不需要挨个遍历Socket来判断是否就绪,提升了性能。

其中Redis的网络模型就是使用I/O多路复用结合事件的处理器来应对多个Socket请求,比如,提供了连接应答处理器、命令回复处理器,命令请求处理器;

在Redis6.0之后,为了提升更好的性能,在命令回复处理器使用了多线程来处理回复事件,在命令请求处理器中,将命令的转换使用了多线程,增加命令转换速度,在命令执行的时候,依然是单线程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/28992.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android ChatOn-v1.66.536-598-[构建于ChatGPT和GPT-4o之上]

ChatOn 链接:https://pan.xunlei.com/s/VOKYnq-i3C83CK-HJ1gfLf4gA1?pwdwzwc# 添加了最大无限积分 删除了所有调试信息 语言:全语言支持

机器学习(六)

一,决策树: 简介: 决策树是一种通过构建类似树状的结构(颠倒的树),从根节点开始逐步对数据进行划分,最终在叶子节点做出预测结果的模型。 结构组成: 根节点:初始的数据集…

求最小公倍数

求最小公倍数 编程实现: 求最小公倍数。 具体要求: 1、小猫询问“请输入第一个数”,并在列表中求出该数的质因数放入列表A,例如输入12; 2、小猫依次询问“请输入第二个数”,并在列表中求出该数的质因数…

【人工智能】GPT-4 vs DeepSeek-R1:谁主导了2025年的AI技术竞争?

前言 2025年,人工智能技术将迎来更加激烈的竞争。随着OpenAI的GPT-4和中国初创公司DeepSeek的DeepSeek-R1在全球范围内崭露头角,AI技术的竞争格局开始发生变化。这篇文章将详细对比这两款AI模型,从技术背景、应用领域、性能、成本效益等多个方…

C/C++蓝桥杯算法真题打卡(Day1)

一、LCR 018. 验证回文串 - 力扣(LeetCode) 算法代码: class Solution { public:bool isPalindrome(string s) {int n s.size();// 处理一下s为空字符的情况if (n 0) {return true; // 修正拼写错误}// 定义左右指针遍历字符串int left …

SpringUI高保真动态交互元件库:助力产品原型设计

SpringUI 是一个专为Web设计与开发领域打造的高质量、全面且易于使用的交互元件集合。通过提供一系列预制的、高质量的交互组件,帮助设计师快速构建出功能丰富、界面美观的原型。 ————基础元件: ——————按钮 Button:基础按钮、禁用…

vue+neo4j 四大名著知识图谱问答系统

编号: D039 视频 vueneo4j四大名著知识图谱问答系统 技术架构 vuedjangoneo4jmysql技术实现 功能模块图 问答:基于知识图谱检索、支持图多跳、显示推理路径 姜维的师傅的主公的臣是谁: 马谡 知识图谱:四大名著总共4个图谱 红楼梦图谱 …

学习使用ESP8266进行MQTT通信并在网页上可视化显示

目录 一、工具 二、 流程 三、代码实现 设置MQTT服务器地址 设置服务器和端口号 连接MQTT服务器并订阅话题 回调处理函数 发布数据到话题 四、调试软件使用 打开MQTTx 添加话题 五、网页使用 一、工具 arduino ide esp8266/32单片机 lot物联网网页 MQTTx软件或者m…

大模型应用开发学习笔记

Huggingface 下载模型: model_dirr"G:\python_ws_g\code\LLMProject\session_4\day02_huggingface\transformers_test\model\uer\uer\gpt2-chinese-cluecorpussmall\models--uer--gpt2-chinese-cluecorpussmall\snapshots\c2c0249d8a2731f269414cc3b22dff021…

虚拟卡 WildCard (野卡) 保姆级开卡教程

本文首发于只抄博客,欢迎点击原文链接了解更多内容。 前言 本篇教程为 WildCard 的介绍以及开卡教学,要了解不同平台(Grok、Talkatone 等)的订阅方式请移步《订阅教程》分类 当我们想要充值国外平台会员时,一般都需要使…

C++实现3D(EasyX)详细教程

一、关于3D 我们看见,这两个三角形是相似的,因此计算很简单 若相对物体的方向是斜的,计算三角函数即可 不会的看代码 二、EasyX简介 initgraph(长,宽) 打开绘图 或initgraph(长,宽…

Qt 进度条与多线程应用、基于 Qt 的文件复制工具开发

练习1:Qt 进度条与多线程应用 题目描述 开发一个基于 Qt 的应用程序,该应用程序包含一个水平进度条(QSlider),并且需要通过多线程来更新进度条的值。请根据以下要求完成代码: 界面设计: 使用 QS…

【算法day2】无重复字符的最长子串 两数之和

无重复字符的最长子串 给定一个字符串 s ,请你找出其中不含有重复字符的 最长 子串 的长度。 https://leetcode.cn/problems/longest-substring-without-repeating-characters/ class Solution { public:int lengthOfLongestSubstring(string s) {int sub_length …

XHR请求解密:抓取动态生成数据的方法

在如今动态页面大行其道的时代,传统的静态页面爬虫已无法满足数据采集需求。尤其是在目标网站通过XHR(XMLHttpRequest)动态加载数据的情况下,如何精准解密XHR请求、捕获动态生成的数据成为关键技术难题。本文将深入剖析XHR请求解密…

【漫话机器学习系列】121.偏导数(Partial Derivative)

偏导数(Partial Derivative)详解 1. 引言 在数学分析、机器学习、物理学和工程学中,我们经常会遇到多个变量的函数。这些函数的输出不仅取决于一个变量,而是由多个变量共同决定的。那么,当其中某一个变量发生变化时&…

[C语言日寄] 字符串操作函数的使用及其拓展

【作者主页】siy2333 【专栏介绍】⌈c语言日寄⌋:这是一个专注于C语言刷题的专栏,精选题目,搭配详细题解、拓展算法。从基础语法到复杂算法,题目涉及的知识点全面覆盖,助力你系统提升。无论你是初学者,还是…

计算机毕业设计Python+Django+Vue3微博数据舆情分析平台 微博用户画像系统 微博舆情可视化(源码+ 文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

ssm_mysql_暖心家装平台

收藏关注不迷路!! 🌟文末获取源码数据库🌟 感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多…

地下井室可燃气体监测装置:守护地下安全,防患于未“燃”!

在城市的地下,隐藏着无数的燃气管道和井室,它们是城市基础设施建设的重要部分,燃气的使用,给大家的生活提供了极大的便利。在便利生活的背后,也存在潜在的城市安全隐患。 近年来,地下井室可燃气体泄漏事故…

EasyCVR平台赋能农业产业园:AIoT驱动的视频监控与大数据分析解决方案

随着现代农业的快速发展,农业产业园区的规模不断扩大,管理复杂度也随之增加。为了提高农业生产效率、保障农产品质量安全、实现精细化管理和智能化运营,视频信息化建设成为现代农业产业园的重要发展方向。EasyCVR作为一款功能强大的视频监控与…