OpenCV4.9关于矩阵上的掩码操作

 返回:OpenCV系列文章目录(持续更新中......)

上一篇:如何使用OpenCV扫描图像、查找表和时间测量

下一篇:OpenCV4.9的是如何进行图像操作 

引言:

矩阵上的掩码操作非常简单。这个想法是,我们根据掩码矩阵(也称为内核)重新计算图像中每个像素的值。此蒙版包含的值将调整相邻像素(和当前像素)对新像素值的影响程度。从数学的角度来看,我们用指定的值做一个加权平均值。

测试用例

考虑图像对比度增强方法的问题。对图像的每个像素基本上应用以下公式:

I(i,j)=5∗I(i,j)−[I(i−1,j)+I(i+1,j)+I(i,j−1)+I(i,j+1)]

⟺I(i,j)∗M,where M=i∖j−10+1−10−100−15−1+10−10

第一种表示法是使用公式,而第二种表示法是第一种表示法的压缩版本,使用蒙版。使用蒙版的方法是将蒙版矩阵的中心(以大写字母表示,由零零索引表示)放在要计算的像素上,并将像素值乘以重叠的矩阵值相加。这是一回事,但是在大型矩阵的情况下,后一种符号更容易查看。

代码

C++

您可以从此处下载此源代码,或查看 OpenCV 源代码库示例目录  samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp.

​#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
using namespace std;
using namespace cv;
static void help(char* progName)
{
cout << endl
<< "This program shows how to filter images with mask: the write it yourself and the"
<< "filter2d way. " << endl
<< "Usage:" << endl
<< progName << " [image_path -- default lena.jpg] [G -- grayscale] " << endl << endl;
}
void Sharpen(const Mat& myImage,Mat& Result);
int main( int argc, char* argv[])
{
help(argv[0]);
const char* filename = argc >=2 ? argv[1] : "lena.jpg";
Mat src, dst0, dst1;
if (argc >= 3 && !strcmp("G", argv[2]))
src = imread( samples::findFile( filename ), IMREAD_GRAYSCALE);
else
src = imread( samples::findFile( filename ), IMREAD_COLOR);
if (src.empty())
{
cerr << "Can't open image [" << filename << "]" << endl;
return EXIT_FAILURE;
}
namedWindow("Input", WINDOW_AUTOSIZE);
namedWindow("Output", WINDOW_AUTOSIZE);
imshow( "Input", src );
double t = (double)getTickCount();
Sharpen( src, dst0 );
t = ((double)getTickCount() - t)/getTickFrequency();
cout << "Hand written function time passed in seconds: " << t << endl;
imshow( "Output", dst0 );
waitKey();
Mat kernel = (Mat_<char>(3,3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);
t = (double)getTickCount();
filter2D( src, dst1, src.depth(), kernel );
t = ((double)getTickCount() - t)/getTickFrequency();
cout << "Built-in filter2D time passed in seconds: " << t << endl;
imshow( "Output", dst1 );
waitKey();
return EXIT_SUCCESS;
}
void Sharpen(const Mat& myImage,Mat& Result)
{
CV_Assert(myImage.depth() == CV_8U); // accept only uchar images
const int nChannels = myImage.channels();
Result.create(myImage.size(),myImage.type());
for(int j = 1 ; j < myImage.rows-1; ++j)
{
const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j );
const uchar* next = myImage.ptr<uchar>(j + 1);
uchar* output = Result.ptr<uchar>(j);
for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
{
output[i] = saturate_cast<uchar>(5*current[i]
-current[i-nChannels] - current[i+nChannels] - previous[i] - next[i]);
}
}
Result.row(0).setTo(Scalar(0));
Result.row(Result.rows-1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols-1).setTo(Scalar(0));
}

Java代码:samples/java/tutorial_code/core/mat_mask_operations/MatMaskOperations.java.

import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class MatMaskOperationsRun {public void run(String[] args) {String filename = "../data/lena.jpg";int img_codec = Imgcodecs.IMREAD_COLOR;if (args.length != 0) {filename = args[0];if (args.length >= 2 && args[1].equals("G"))img_codec = Imgcodecs.IMREAD_GRAYSCALE;}Mat src = Imgcodecs.imread(filename, img_codec);if (src.empty()) {System.out.println("Can't open image [" + filename + "]");System.out.println("Program Arguments: [image_path -- default ../data/lena.jpg] [G -- grayscale]");System.exit(-1);}HighGui.namedWindow("Input", HighGui.WINDOW_AUTOSIZE);HighGui.namedWindow("Output", HighGui.WINDOW_AUTOSIZE);HighGui.imshow( "Input", src );double t = System.currentTimeMillis();Mat dst0 = sharpen(src, new Mat());t = ((double) System.currentTimeMillis() - t) / 1000;System.out.println("Hand written function time passed in seconds: " + t);HighGui.imshow( "Output", dst0 );HighGui.moveWindow("Output", 400, 400);HighGui.waitKey();Mat kern = new Mat(3, 3, CvType.CV_8S);int row = 0, col = 0;kern.put(row, col, 0, -1, 0, -1, 5, -1, 0, -1, 0);t = System.currentTimeMillis();Mat dst1 = new Mat();Imgproc.filter2D(src, dst1, src.depth(), kern);t = ((double) System.currentTimeMillis() - t) / 1000;System.out.println("Built-in filter2D time passed in seconds: " + t);HighGui.imshow( "Output", dst1 );HighGui.waitKey();System.exit(0);}public static double saturate(double x) {return x > 255.0 ? 255.0 : (x < 0.0 ? 0.0 : x);}public Mat sharpen(Mat myImage, Mat Result) {myImage.convertTo(myImage, CvType.CV_8U);int nChannels = myImage.channels();Result.create(myImage.size(), myImage.type());for (int j = 1; j < myImage.rows() - 1; ++j) {for (int i = 1; i < myImage.cols() - 1; ++i) {double sum[] = new double[nChannels];for (int k = 0; k < nChannels; ++k) {double top = -myImage.get(j - 1, i)[k];double bottom = -myImage.get(j + 1, i)[k];double center = (5 * myImage.get(j, i)[k]);double left = -myImage.get(j, i - 1)[k];double right = -myImage.get(j, i + 1)[k];sum[k] = saturate(top + bottom + center + left + right);}Result.put(j, i, sum);}}Result.row(0).setTo(new Scalar(0));Result.row(Result.rows() - 1).setTo(new Scalar(0));Result.col(0).setTo(new Scalar(0));Result.col(Result.cols() - 1).setTo(new Scalar(0));return Result;}
}
public class MatMaskOperations {public static void main(String[] args) {// Load the native library.System.loadLibrary(Core.NATIVE_LIBRARY_NAME);new MatMaskOperationsRun().run(args);}
}

Python代码:

samples/python/tutorial_code/core/mat_mask_operations/mat_mask_operations.py.

from __future__ import print_function
import sys
import time
import numpy as np
import cv2 as cv
def is_grayscale(my_image):return len(my_image.shape) < 3
def saturated(sum_value):if sum_value > 255:sum_value = 255if sum_value < 0:sum_value = 0return sum_value
def sharpen(my_image):if is_grayscale(my_image):height, width = my_image.shapeelse:my_image = cv.cvtColor(my_image, cv.CV_8U)height, width, n_channels = my_image.shaperesult = np.zeros(my_image.shape, my_image.dtype) for j in range(1, height - 1):for i in range(1, width - 1):if is_grayscale(my_image):sum_value = 5 * my_image[j, i] - my_image[j + 1, i] - my_image[j - 1, i] \- my_image[j, i + 1] - my_image[j, i - 1]result[j, i] = saturated(sum_value)else:for k in range(0, n_channels):sum_value = 5 * my_image[j, i, k] - my_image[j + 1, i, k] \- my_image[j - 1, i, k] - my_image[j, i + 1, k]\- my_image[j, i - 1, k]result[j, i, k] = saturated(sum_value) return result
def main(argv):filename = 'lena.jpg'img_codec = cv.IMREAD_COLORif argv:filename = sys.argv[1]if len(argv) >= 2 and sys.argv[2] == "G":img_codec = cv.IMREAD_GRAYSCALEsrc = cv.imread(cv.samples.findFile(filename), img_codec)if src is None:print("Can't open image [" + filename + "]")print("Usage:")print("mat_mask_operations.py [image_path -- default lena.jpg] [G -- grayscale]")return -1cv.namedWindow("Input", cv.WINDOW_AUTOSIZE)cv.namedWindow("Output", cv.WINDOW_AUTOSIZE)cv.imshow("Input", src)t = round(time.time())dst0 = sharpen(src)t = (time.time() - t)print("Hand written function time passed in seconds: %s" % t)cv.imshow("Output", dst0)cv.waitKey()t = time.time() kernel = np.array([[0, -1, 0],[-1, 5, -1],[0, -1, 0]], np.float32) # kernel should be floating point type dst1 = cv.filter2D(src, -1, kernel)# ddepth = -1, means destination image has depth same as input image t = (time.time() - t)print("Built-in filter2D time passed in seconds: %s" % t)cv.imshow("Output", dst1)cv.waitKey(0)cv.destroyAllWindows()return 0
if __name__ == "__main__":main(sys.argv[1:])

基本方法

现在让我们看看如何通过使用基本的像素访问方法或使用 filter2D() 函数来实现这一点。

下面是一个函数,可以执行此操作:

C++代码;

def is_grayscale(my_image):return len(my_image.shape) < 3
def saturated(sum_value):if sum_value > 255:sum_value = 255if sum_value < 0:sum_value = 0return sum_value
def sharpen(my_image):if is_grayscale(my_image):height, width = my_image.shapeelse:my_image = cv.cvtColor(my_image, cv.CV_8U)height, width, n_channels = my_image.shaperesult = np.zeros(my_image.shape, my_image.dtype) for j in range(1, height - 1):for i in range(1, width - 1):if is_grayscale(my_image):sum_value = 5 * my_image[j, i] - my_image[j + 1, i] - my_image[j - 1, i] \- my_image[j, i + 1] - my_image[j, i - 1]result[j, i] = saturated(sum_value)else:for k in range(0, n_channels):sum_value = 5 * my_image[j, i, k] - my_image[j + 1, i, k] \- my_image[j - 1, i, k] - my_image[j, i + 1, k]\- my_image[j, i - 1, k]result[j, i, k] = saturated(sum_value) return result

Java代码:

 public static double saturate(double x) {return x > 255.0 ? 255.0 : (x < 0.0 ? 0.0 : x);}public Mat sharpen(Mat myImage, Mat Result) {myImage.convertTo(myImage, CvType.CV_8U);int nChannels = myImage.channels();Result.create(myImage.size(), myImage.type());for (int j = 1; j < myImage.rows() - 1; ++j) {for (int i = 1; i < myImage.cols() - 1; ++i) {double sum[] = new double[nChannels];for (int k = 0; k < nChannels; ++k) {double top = -myImage.get(j - 1, i)[k];double bottom = -myImage.get(j + 1, i)[k];double center = (5 * myImage.get(j, i)[k]);double left = -myImage.get(j, i - 1)[k];double right = -myImage.get(j, i + 1)[k];sum[k] = saturate(top + bottom + center + left + right);}Result.put(j, i, sum);}}Result.row(0).setTo(new Scalar(0));Result.row(Result.rows() - 1).setTo(new Scalar(0));Result.col(0).setTo(new Scalar(0));Result.col(Result.cols() - 1).setTo(new Scalar(0));return Result;}

Python代码

def is_grayscale(my_image):return len(my_image.shape) < 3
def saturated(sum_value):if sum_value > 255:sum_value = 255if sum_value < 0:sum_value = 0return sum_value
def sharpen(my_image):if is_grayscale(my_image):height, width = my_image.shapeelse:my_image = cv.cvtColor(my_image, cv.CV_8U)height, width, n_channels = my_image.shaperesult = np.zeros(my_image.shape, my_image.dtype) for j in range(1, height - 1):for i in range(1, width - 1):if is_grayscale(my_image):sum_value = 5 * my_image[j, i] - my_image[j + 1, i] - my_image[j - 1, i] \- my_image[j, i + 1] - my_image[j, i - 1]result[j, i] = saturated(sum_value)else:for k in range(0, n_channels):sum_value = 5 * my_image[j, i, k] - my_image[j + 1, i, k] \- my_image[j - 1, i, k] - my_image[j, i + 1, k]\- my_image[j, i - 1, k]result[j, i, k] = saturated(sum_value) return result

首先,我们确保输入图像数据采用无符号字符格式。为此,我们使用cv::CV_Assert 函数,当其中的表达式为 false 时,该函数会抛出错误。

 CV_Assert(myImage.depth() == CV_8U); // 只接受 uchar 图片

我们创建一个与输入具有相同大小和类型的输出图像。正如您在存储部分中看到的那样,根据通道的数量,我们可能有一个或多个子列。

我们将通过指针遍历它们,因此元素的总数取决于这个数字。

const int nChannels = myImage.channels();
Result.create(myImage.size(),myImage.type());

我们将使用普通的 C [] 运算符来访问像素。因为我们需要同时访问多行,所以我们将获取每行的指针(上一行、当前行和下一行)。我们需要另一个指向要保存计算位置的指针。然后,只需使用 [] 运算符访问正确的项目即可。为了将输出指针向前移动,我们只需在每次操作后增加此值(一个字节):

 for(int j = 1 ; j < myImage.rows-1; ++j){const uchar* previous = myImage.ptr<uchar>(j - 1);const uchar* current = myImage.ptr<uchar>(j );const uchar* next = myImage.ptr<uchar>(j + 1);uchar* output = Result.ptr<uchar>(j);for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i){output[i] = saturate_cast<uchar>(5*current[i]-current[i-nChannels] - current[i+nChannels] - previous[i] - next[i]);}}

在图像的边框上,上面的符号会导致不存在的像素位置(如负一 - 负一)。在这些方面,我们的公式是未定义的。一个简单的解决方案是不在这些点上应用内核,例如,将边框上的像素设置为零:

 Result.row(0).setTo(Scalar(0));Result.row(Result.rows-1).setTo(Scalar(0));Result.col(0).setTo(Scalar(0));Result.col(Result.cols-1).setTo(Scalar(0));

filter2D 函数
 

应用这种过滤器在图像处理中非常普遍,以至于在 OpenCV 中有一个函数可以负责应用掩码(在某些地方也称为内核)。为此,您首先需要定义一个包含掩码的对象:

C++代码:

 Mat kernel = (Mat_<char>(3,3) << 0, -1, 0,-1, 5, -1,0, -1, 0);

 然后调用 filter2D() 函数,指定要使用的输入、输出图像和内核:

 filter2D( src, dst1, src.depth(), kernel );

 Java代码:

 Mat kern = new Mat(3, 3, CvType.CV_8S);int row = 0, col = 0;kern.put(row, col, 0, -1, 0, -1, 5, -1, 0, -1, 0);

 然后调用 filter2D() 函数,指定要使用的输入、输出图像和内核:

 Imgproc.filter2D(src, dst1, src.depth(), kern);

Python代码:

 kernel = np.array([[0, -1, 0],[-1, 5, -1],[0, -1, 0]], np.float32) # kernel should be floating point type

 然后调用 filter2D() 函数,指定要使用的输入、输出图像和内核: 

 dst1 = cv.filter2D(src, -1, kernel)# ddepth = -1, means destination image has depth same as input image

该函数甚至还有第五个可选参数来指定内核的中心,第六个参数用于在将过滤后的像素存储在 K 中之前向它们添加可选值,第七个参数用于确定在未定义操作的区域(边界)中执行的操作。

此函数更短,更不冗长,并且由于进行了一些优化,因此通常比手动编码方法更快。例如,在我的测试中,第二个测试只用了 13 毫秒,而第一个测试大约需要 31 毫秒。相当有区别。

例如:

resultMatMaskFilter2D.png

在我们的 YouTube 频道上查看运行该程序的实例。

参考文章:

1、《Mask operations on matrices》-----Bernát Gábor

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/290547.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Jenkins拉取github项目相关问题

1.私有仓库问题 1.1如果你的仓库是私有的&#xff0c;21年起github就不支持账号密码的方式拉取代码了 那么就需要在github上面创建一个token (classic) 然后在Jenkins代码设置那里 然后应该就可以顺利打包了。 2.找不到pom&#xff08;多了一层文件夹&#xff09;问题 解…

【计算机组成】计算机组成与结构(四)

上一篇&#xff1a;【计算机组成】计算机组成与结构&#xff08;三&#xff09; &#xff08;7&#xff09;存储系统 计算机采用分级存储体系的主要目的是为了解决存储容量、成本和速度之间的矛盾问题。 两级存储:cache-主存、主存-辅存(虚拟存储体系) 局部性原理 ◆ 局部性…

WebPack的使用及属性配、打包资源

WebPack(静态模块打包工具)(webpack默认只识别js和json内容) WebPack的作用 把静态模块内容压缩、整合、转译等&#xff08;前端工程化&#xff09; 1️⃣把less/sass转成css代码 2️⃣把ES6降级成ES5 3️⃣支持多种模块文件类型&#xff0c;多种模块标准语法 export、export…

网络七层模型之数据链路层:理解网络通信的架构(二)

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

零基础10 天入门 Web3之第1天

10 天入门 Web3 Web3 是互联网的下一代&#xff0c;它将使人们拥有自己的数据并控制自己的在线体验。Web3 基于区块链技术&#xff0c;该技术为安全、透明和可信的交易提供支持。我准备做一个 10 天的学习计划&#xff0c;可帮助大家入门 Web3&#xff1a; 想要一起探讨学习的…

vue 窗口内容滚动到底部

onMounted(() > {scrollToBottom() }) // 滚动到底部方法 const scrollToBottom () > {// 获取聊天窗口容器let chatRoom: any document.querySelector(".chat-content");// 滚动到容器底部chatRoom.scrollTop chatRoom.scrollHeight; } 效果 聊天窗口代码…

【Go】结构体中Tag标识

https://blog.csdn.net/weixin_45193103/article/details/123876319 https://blog.csdn.net/qq_49723651/article/details/122005291 https://juejin.cn/post/7005465902804123679 学一点&#xff0c;整一点&#xff0c;基本都是综合别人的&#xff0c;弄成我能理解的内容 Tag定…

Unity 窗口化设置

在Unity中要实现窗口化&#xff0c;具体设置如下&#xff1a; 在编辑器中&#xff0c;选择File -> Build Settings。在Player Settings中&#xff0c;找到Resolution and Presentation部分。取消勾选"Fullscreen Mode"&#xff0c;并选择"Windowed"。设…

不愧是字节出来的,真厉害...

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 关注公众号【互联网杂货铺】&#xff0c;回复 1 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 前段时间公司缺人&#xff0c;也面了许多测试&#xff0c;一开始…

使用unplugin-auto-import页面不引入api飘红

解决方案&#xff1a;. tsconfig.json文件夹加上 {"compilerOptions": {"target": "ES2020","useDefineForClassFields": true,"module": "ESNext","lib": ["ES2020", "DOM", &q…

安卓调试桥ADB

Logcat 命令行工具 | Android Studio | Android Developers 什么是ADB ADB 全称为 Android Debug Bridge &#xff0c;是 Android SDK &#xff08;安卓的开发工具&#xff09;中的一个工具&#xff0c;起到调试桥的作用&#xff0c;是一个 客户端 - 服务器端程序 。其中 …

利用云手机技术,开拓海外社交市场

近年来&#xff0c;随着科技的不断进步&#xff0c;云手机技术逐渐在海外社交营销领域崭露头角。其灵活性、成本效益和全球性特征使其成为海外社交营销的利器。那么&#xff0c;究竟云手机在海外社交营销中扮演了怎样的角色呢&#xff1f; 首先&#xff0c;云手机技术能够消除地…

【SpringCloud】Ribbon负载均衡

&#x1f3e1;浩泽学编程&#xff1a;个人主页 &#x1f525; 推荐专栏&#xff1a;《深入浅出SpringBoot》《java对AI的调用开发》 《RabbitMQ》《Spring》《SpringMVC》《项目实战》 &#x1f6f8;学无止境&#xff0c;不骄不躁&#xff0c;知行合一 文章目录 …

如何调试Clang源码

下载编译Clang 这个就直接去LLVM官网下载&#xff0c;然后编译好Clang就行&#xff0c;注意得debug模式&#xff0c;保存符号信息。 调试Clang 可以直接通过命令行来调试 #进入调试环境&#xff0c;这里的clang得是刚刚编译好的 lldb ./clang # r是运行&#xff0c;后面是正…

DC-9靶场

一.环境搭建 1.下载地址 靶机下载地址&#xff1a;https://download.vulnhub.com/dc/DC-9.zip 2.虚拟机配置 设置虚拟机为nat&#xff0c;遇到错误点重试和是 开启虚拟机如下图所示 二.开始渗透 1. 信息收集 查找靶机的ip地址 arp-scan -l 发现靶机的ip地址为192.168.11…

rust使用Command库调用cmd命令或者shell命令,并支持多个参数和指定文件夹目录

想要在不同的平台上运行flutter doctor命令&#xff0c;就需要知道对应的平台是windows还是linux&#xff0c;如果是windows就需要调用cmd命令&#xff0c;如果是linux平台&#xff0c;就需要调用sh命令&#xff0c;所以可以通过cfg!实现不同平台的判断&#xff0c;然后调用不同…

Kibana操作Elasticsearch教程

文章目录 简介ES文档操作创建索引查看索引创建映射字段查看映射关系字段属性详解typeindexstore 字段映射设置流程 新增数据新增会随机生成id新增自定义id智能判断 修改数据删除数据查询基本查询查询所有&#xff08;match_all&#xff09;匹配查询多字段查询词条匹配多词条精确…

2024 年广西职业院校技能大赛高职组《云计算应用》赛项样卷

#需要资源&#xff08;软件包及镜像&#xff09;或有问题的&#xff0c;可私博主&#xff01;&#xff01;&#xff01; #需要资源&#xff08;软件包及镜像&#xff09;或有问题的&#xff0c;可私博主&#xff01;&#xff01;&#xff01; #需要资源&#xff08;软件包及镜…

Vue生命周期,从听说到深入理解(全面分析)

每个 Vue 组件实例在创建时都需要经历一系列的初始化步骤&#xff0c;比如设置好数据侦听&#xff0c;编译模板&#xff0c;挂载实例到 DOM&#xff0c;以及在数据改变时更新 DOM。在此过程中&#xff0c;它也会运行被称为生命周期钩子的函数&#xff0c;让开发者有机会在特定阶…

关于Devc++调试的问题以及解决STL变量无法查看

目前Devc的调试主要有以下几点&#xff1a; 1.调试不能直接查看stl变量&#xff0c;会卡死不动 2.目前单步进入只能用鼠标键按 3.若想按下一步进入函数体内&#xff0c;要在函数体内打上断点才行 4.调试到return 0 ;上一句就停了&#xff0c;不会结束程序 5.目前F2跳至断点…