政安晨:专栏目录【TensorFlow与Keras机器学习实战】

政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本篇是作者政安晨的专栏TensorFlow与Keras机器学习实战》的总纲专栏文章不断更新,这篇目录总纲也会随着专栏不断更新。


TensorFLow简述

TensorFlow给自己的定位是端到端机器学习平台,作者政安晨对TensorFlow的简述如下:

谷歌的TensorFlow是一个开源的机器学习框架,用于构建和训练各种机器学习模型

它提供了一个高度灵活和可扩展的平台,可以在多种硬件平台上运行,包括移动设备和分布式系统。

TensorFlow的核心是数据流图,它表示了模型的计算过程。

用户可以定义计算图中的各种操作和变量,并使用TensorFlow的API来进行操作。

TensorFlow提供了丰富的操作库,包括数值运算、图像处理、文本处理等。用户可以根据自己的需求选择合适的操作来构建模型。

TensorFlow还提供了强大的自动求导功能,可以自动计算模型中各个参数的梯度。这使得用户可以方便地进行优化算法的实现和训练模型。

此外,TensorFlow还具有分布式计算的能力,可以在多台机器上进行并行计算。这使得TensorFlow可以处理大规模的数据和复杂的模型。

总之,TensorFlow是一个功能强大、灵活可扩展的机器学习框架,被广泛应用于各个领域,包括计算机视觉、自然语言处理、强化学习等。

导入和使用TensorFlow其实并不难:

import tensorflow as tf

关键是如何循序渐进地入门,并针对某个具体目标开展实例,并解决问题。


Keras简述

Keras给自己的定位是一个用 Python 编写的高级神经网络 API,作者政安晨对Keras的简述如下:

Keras是一个开源的高级神经网络库,用于构建和训练深度学习模型。

它是Python编程语言的接口,能够在多种深度学习框架的后端运行,包括TensorFlow、Theano和CNTK、PyTorch等。Keras的设计目标是让用户能够快速、简单地实现和迭代神经网络模型。

Keras提供了一系列丰富的工具和功能,方便用户进行模型构建、层的堆叠、优化算法的选择和训练过程的监控等。

它提供了一种直观的、具有模块化特性的方式来定义模型,可以通过简单地将预定义的层进行堆叠和连接来创建神经网络。在模型构建的过程中,用户可以选择不同的层类型,如全连接层、卷积层、池化层等,并进行定制化的配置。

Keras还提供了一系列内置的优化算法,如随机梯度下降(SGD)、Adam、Adagrad等,用户可以根据任务的要求选择适合的优化算法。此外,Keras还提供了一些常用的损失函数和性能评估指标,如均方误差(MSE)、交叉熵(Cross-Entropy)、准确率等。

Keras的特点之一是其模块化和可扩展性。用户可以通过定制化的方式来创建自定义的层、损失函数或评估指标,并将它们与现有的Keras功能无缝集成。这种灵活性使得Keras适用于各种深度学习任务,如图像分类、自然语言处理、语音识别等。

总的来说,Keras是一个简单易用、高效灵活的机器学习库,使得构建和训练神经网络模型变得更加容易。它的设计哲学是用户友好,追求快速实现和迭代,为机器学习领域的研究人员和工程师提供了一个强大的工具。

导入和使用Keras其实并不难:

from tensorflow import keras
from tensorflow.keras import layers

关键是如何对Keras的API体系和方法有整体认识,并在实际应用中,恰当地选择解决方案。


目录摘要

目录分类根据文章对不同层次用户的使用功效划分。

入门尝试

××××××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨——基于Anaconda安装TensorFlow并尝试一个神经网络小实例

政安晨——跟着演练快速理解TensorFlow(适合新手入门)

政安晨——基于Ubuntu系统的Miniconda安装TensorFlow并使用Jupyter Notebook在多个Conda虚拟环境下管理测试

政安晨——演绎一个TensorFlow官方的Keras示例(对服装图像进行分类,很全面)

政安晨——示例演绎在TensorFlow中使用 CSV数据(基于Colab的Jupyter笔记)(1.5万字长文超详细)

政安晨:【详细解析】【用TensorFlow从头实现】一个机器学习的神经网络小示例【解构演绎】

政安晨:【示例演绎】【用TensorFlow编写线性分类器】—— 同时了解一点TensorFlow与Keras的基本概念


夯实基础

×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨:示例演绎机器学习中(深度学习)神经网络的数学基础——快速理解核心概念(一){两篇文章讲清楚}

政安晨:示例演绎机器学习中(深度学习)神经网络的数学基础——快速理解核心概念(二){两篇文章讲清楚}

政安晨:示例演绎TensorFlow的官方指南(一){基础知识}

政安晨:示例演绎TensorFlow的官方指南(二){Estimator}

政安晨:示例演绎TensorFlow的官方指南(三){快速使用数据可视化工具TensorBoard}

政安晨:【示例演绎机器学习】(一)—— 剖析神经网络:学习核心的Keras API

政安晨:【示例演绎机器学习】(二)—— 神经网络的二分类问题示例(影评分类)

政安晨:【示例演绎机器学习】(三)—— 神经网络的多分类问题示例 (新闻分类)

政安晨:【示例演绎机器学习】(四)—— 神经网络的标量回归问题示例 (价格预测)

政安晨:【深度学习部署】—— TensorFlow Extended(TFX)介绍

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(一)—— 单个神经元

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(二)—— 深度神经网络

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(三)—— 随机梯度下降

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(四)—— 过拟合和欠拟合

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(五)—— Dropout和批归一化

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(六)—— 二元分类

政安晨:【Keras机器学习实践要点】(一)—— 从快速上手开始

政安晨:【Keras机器学习实践要点】(二)—— 给首次接触Keras 3 的朋友

政安晨:【Keras机器学习实践要点】(三)—— 编写组件与训练数据

政安晨:【Keras机器学习实践要点】(四)—— 顺序模型

政安晨:【Keras机器学习实践要点】(五)—— 通过子类化创建新层和模型

政安晨:【Keras机器学习实践要点】(六)—— 使用内置方法进行训练和评估

政安晨:【Keras机器学习实践要点】(七)—— 使用TensorFlow自定义fit()

政安晨:【Keras机器学习实践要点】(八)—— 在 TensorFlow 中从头开始编写训练循环


实践提高

××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨:梯度与导数~示例演绎《机器学习·神经网络》的高阶理解

政安晨:【掌握AI的深度学习工具Keras API】(一)—— 【构建Keras模型的不同方法】(万字长文)

政安晨:【掌握AI的深度学习工具Keras API】(二)—— 【使用内置的训练循环和评估循环】



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/290704.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux:线程同步

个人主页 : 个人主页 个人专栏 : 《数据结构》 《C语言》《C》《Linux》 文章目录 前言线程同步条件变量接口简单示例pthread_cond_wait为什么要有mutex伪唤醒问题的解决 (if->while) 总结 前言 本文作为我对于线程同步知识总结 线程同步 同步&…

uniapp对接萤石云 实现监控播放、云台控制、截图、录像、历史映像等功能

萤石云开发平台地址:文档概述 萤石开放平台API文档 (ys7.com) 萤石云监控播放 首先引入萤石云js js地址:GitHub - Ezviz-OpenBiz/EZUIKit-JavaScript-npm: 轻应用npm版本,降低接入难度,适配自定义UI,适配主流框架 vi…

速通汇编(二)汇编mov、addsub指令

一,mov指令 mov指令的全称是move,从字面上去理解,作用是移动(比较确切的说是复制)数据,mov指令可以有以下几种形式 无论哪种形式,都是把右边的值移动到左边 mov 寄存器,数据&#…

JavaScript极速入门(1)

初识JavaScript JavaScript是什么 JavaScript(简称JS),是一个脚本语言,解释型或者即时编译型语言.虽然它是作为开发Web页面的脚本语言而著名,但是也应用到了很多非浏览器的环境中. 看似这门语言叫JavaScript,其实在最初发明之初,这门语言的名字其实是在蹭Java的热度,实际上和…

打PTA (15分)(JAVA)

目录 题目描述 输入格式: 输出格式: 输入样例: 输出样例: 题解 题目描述 传说这是集美大学的学生对话。本题要求你做一个简单的自动问答机,对任何一个问句,只要其中包含 PTA 就回答 Yes!,其…

JavaScript高级 —— 学习(一)

目录 一、作用域 (一)局部作用域 1.函数作用域 2.块作用域 (二)全局作用域 二、垃圾回收机制 GC (一)生命周期 1.内存分配 2.内存使用 3.内存回收 4.特殊情况——内存泄漏: 注意&…

Manjaro 安装全新 Linux 版微信,从此告别 Wine

目前已经基本上使用 Manjaro 来工作,而工作离不开微信作为日常的工作沟通工具。因为微信官方一直没有 Linux 版本的,所以之前都只能够使用 Wine 版本,然后踩了不少坑,但还算能勉强使用。 最近听说微信终于要发布 Linux 版本的&am…

Linux之冯诺依曼体系,操作系统,进程的理解,进程状态,以及进程的优先级

个人主页:点我进入主页 专栏分类:C语言初阶 C语言进阶 数据结构初阶 Linux C初阶 算法 欢迎大家点赞,评论,收藏。 一起努力,一起奔赴大厂 目录 一.冯诺依曼体系 二.操作系统 2.1概念 2.2结构示意图&…

基于Axios封装请求---防止接口重复请求解决方案

一、引言 前端接口防止重复请求的实现方案主要基于以下几个原因: 用户体验:重复发送请求可能导致页面长时间无响应或加载缓慢,从而影响用户的体验。特别是在网络不稳定或请求处理时间较长的情况下,这个问题尤为突出。 服务器压力…

树状数组与线段树基础3

本来想练练线段树的,没想到有许多细节忘了,加上今天的金工实习坐牢坐穿了,于是再复习一下吧。 首先介绍一下树状数组(貌似第一篇就讲了,不过那个东西真是一坨Shit,当时还没有怎么理解就写了) 首先它的复杂…

知识图谱与大数据:区别、联系与应用

目录 前言1 知识图谱1.1 定义1.2 特点1.3 应用 2 大数据2.1 定义2.2 应用 3. 区别与联系3.1 区别3.2 联系 结语 前言 在当今信息爆炸的时代,数据成为了我们生活和工作中不可或缺的资源。知识图谱和大数据是两个关键概念,它们在人工智能、数据科学和信息…

30-3 越权漏洞 - 水平越权(横向越权)

环境准备:构建完善的安全渗透测试环境:推荐工具、资源和下载链接_渗透测试靶机下载-CSDN博客 一、定义 攻击者可以访问和操作与其拥有同级权限的用户资源。 示例: 学生A在教务系统上正常只能修改自己的作业内容,但由于不合理的权限校验规则等原因,学生A可以修改学生B的内…

【python】flask执行上下文context,请求上下文和应用上下文原理解析

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

【Java - 框架 - Lombok】(2) SpringBoot整合Lombok完成日志的创建使用 - 快速上手;

"SpringBoot"整合"Lombok"完成日志的创建使用 - 快速上手; 环境 “Java"版本"1.8.0_202”;“Lombok"版本"1.18.20”;“Spring Boot"版本"2.5.9”;“Windows 11 专业版_22621…

厨余垃圾处理设备工业监控PLC连接APP小程序智能软硬件开发之功能原理篇

接着上一篇《厨余垃圾处理设备工业监控PLC连接APP小程序智能软硬件开发之功能结构篇》继续总结一下厨余垃圾处理设备智能软硬件统的原理。所有的软硬件系统全是自己一人独自开发,看法和角度难免有局限性。希望抛砖引玉,将该智能软硬件系统分享给更多有类…

Web APIs

文章目录 Web APIs1. DOM1.1 介绍DOM 树DOM 节点document 1.2 获取DOM对象1.3 操作元素内容1.4 操作元素属性常用属性修改控制样式属性操作表单元素属性自定义属性 1.5 间歇函数1.6 事件事件监听事件类型事件处理程序 1.7 事件类型鼠标事件键盘事件焦点事件文本框输入事件 1.8 …

数据分析之Power BI

POWER QUERY 获取清洗 POWER PIVOT建模分析 如何加载power pivot 文件-选项-加载项-com加载项-转到 POWER VIEW 可视呈现 如何加载power view 文件-选项-自定义功能区-不在功能区中的命令-新建组-power view-添加-确定 POWER MAP可视地图

vue3-pinia使用(末尾有彩蛋)

什么是 pinia Pinia 是 Vue 的专属状态管理库,它允许你跨组件或页面共享状态。 之前用的是 vuex,后面 vue 官方团队不维护了,推荐使用 pinia 安装 yarn add pinia # 或者使用 npm npm install piniapnpm install piniaStore 是什么&#xf…

AIGC-Stable Diffusion发展及原理总结

目录 一. AIGC介绍 1. 介绍 2. AIGC商业化方向 3. AIGC是技术集合 4. AIGC发展三要素 4.1 数据 4.2 算力 4.3 算法 4.3.1 多模态模型CLIP 4.3.2 图像生成模型 二. Stable Diffusion 稳定扩散模型 1. 介绍 1.1 文生图功能(Txt2Img) 1.2 图生图功能&…

八大技术趋势案例(区块链量子计算)

科技巨变,未来已来,八大技术趋势引领数字化时代。信息技术的迅猛发展,深刻改变了我们的生活、工作和生产方式。人工智能、物联网、云计算、大数据、虚拟现实、增强现实、区块链、量子计算等新兴技术在各行各业得到广泛应用,为各个领域带来了新的活力和变革。 为了更好地了解…