烫烫烫手的结构体大小计算来咯,很烫哦,慢慢消化。自定义类型(一)

emmm,在这炎热的夏天在宿舍吹着空调写着博客也是一件不错的事呢,今天就来来好好盘一下C语言中的自定义类型。

                 常常会回顾努力的自己,所以要给自己的努力留下足迹。

为今天努力的自己打个卡,留个痕迹吧

                                                                      2024.03.29     小闭


目录

结构体的简单使用

 结构体的对齐规则

结构体的大小计算

结构体的简单使用

在 C 语言中,结构体(Structure)是一种用户自定义的数据类型,用于将不同类型的数据组合在一起形成一个复合的数据结构。结构体可以用来表示具有多个相关属性的对象,例如学生信息、员工信息、图书信息等。
 
以下是一个简单的 C 语言结构体代码示例:
 
 

struct Student {char name[50];int age;float marks;
};

这个结构体定义是正常的结构体命名,也有一些特殊的,如下:匿名结构体类型

struct
{int a;char b;float c;
}s;


 
 
上面代码中:我们定义了一个名为 Student 的结构体它包含了三个成员:一个长度为 50 的字符数组 name 用于存储学生的姓名,一个整数 age 用于存储学生的年龄,以及一个浮点数 marks 用于存储学生的成绩。
 
要使用结构体,可以创建结构体变量并访问其成员。例如:
 
 

struct Student student1;
strcpy(student1.name, "Alice"); // 复制字符串到 name 成员
student1.age = 20; // 给 age 成员赋值
student1.marks = 85.5; // 给 marks 成员赋值


 
 
通过” . “操作符,可以访问结构体变量的成员。在这个例子中,我们使用 student1.name 、 student1.age 和 student1.marks 来访问和操作结构体的各个成员。
 

注意:结构体还可以用于定义结构体数组,以及结构体指针等。它们提供了一种灵活的方式来组织和处理相关数据。其中数据结构中的链表和队列等就是用结构体指针完成。


 结构体的对齐规则
 

结构体的大小是结构体知识中是的小奥妙,还是直接写一段代码让大家感受一下,就可以更好的让人理解

int main()
{struct Test{char a;char b;int c;};struct Test T;printf("%d\n", sizeof(T));return 0;
}

 大家是否知道上面结构体的大小为何值,是不是觉得就是两个char和一个int加起来就是6个字节呢,相信初学者都这么认为,因为当初的我也是这样,那么正确答案是什么呢,答案却是8

 

至于为什么呢,这里我们就必须知道一个东西,那就是 ”结构体的内存对齐“。

何为结构体的内存

 那我们就需了解一个对齐规则,那么对齐规则是怎样的呢。

一、结构体的第⼀个成员对齐到和结构体变量起始位置偏移量为0的地址处

二、 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。 对⻬数 = 编译器默认的⼀个对齐数 与 该成员变量大小的较小值VS里的默认对齐数为8.

注意:有些编译器没有默认对齐数,此时成员的对齐数就是成员变量大小

三、结构体总大小为最大对齐数(结构体中每个成员变量都有⼀个对齐数,所有对齐数中最大的)的 整数倍。

四、如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构 体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

 那么了解完后,我们该如何计算大小呢,那么我们现在就跟着对齐规则来,自己算一下上面代码结构体T大小为何为8吧。


结构体的大小计算

首先第一次见到对齐数很好奇,对齐数是什么?偏移量是什么?上面虽然已经解释了对齐数,但还是想知道如何实际用到对齐数来对结构体大小来进行计算。那么下来我将会把我的理解一步一步来解释。

首先我们先将一块用来储存此结构体的内存地址拿出来这里是一个字节代表一个单位,然后给这块内存从0开始标上序号,然后0数字即是0偏移量处。

int main()
{struct Test{char a;char b;int c;};struct Test T;printf("%d\n", sizeof(T));return 0;
}

然后我们再来看看这个结构体大小如何计算 

先我们把char a开始放在偏移量为0处如图红色部分,之后的成员从自身对齐数的整数倍处开始储存。

char类型的大小为1,与默认对齐数8,较小故此成员的对齐数为1
这里1是1的整数倍,所以放在从数字1处开始放char b,
如图黄色部分

这里如上int c的对齐数还是自身的大小,VS的默认对齐数是8,那么此时int c的自身大小为4,故取小的那么这里int c的对齐数就为4,往下找到最近的对齐数4的倍数处开始往下存放。如图绿色部分

完成成员的分布还没有结束,这里最后才是判断结构体大小的时候,按照上面规则:我们最后结构体大小是用全部成员中的最大的对齐数的整数倍,且是选最后一位成员后的整数倍数字,如这里变量a,b,c中c的对齐数最大为4,由于4处的位置已被分布需在最后位成员往后选4的倍数。即:8。那么此时结构体就是8了。


那么拿一题举例肯定是不准确的,我在拿一个例子来举例:

int main()
{struct R{int a;char b;int arr[2];}s;printf("%d\n", sizeof(s));return 0;
}

那么这里我就继续按照步骤来进行计算大小

int a 继续从偏移量为0处放,然后char b的对齐数为1,那么往后放在对齐数1的整数倍处即:数字4处,再然后int arr[2],这里注意我们不能把int arr[2]当作一个成员而应该当成两个int类型成员(这个要尤其注意),然后先将一个int放在对齐数4的整数倍处即:数字8处,然后继续将第二个元素也是放在对齐数4的整数倍处即:数字12处,。最后完成分布后选出成员中最大的对齐数即4,那么结构体大小为最后一位成员后面最大对齐数4的整数倍,即16.


然后再举一个结构体镶嵌的例子

int main()
{struct R{int a;char b;int arr[2];};struct Test{int a;struct R s;char b;short c;}t;printf("%d\n", sizeof(t));return 0;
}

这里要求的是结构体struct Test t 的大小,那么就看到R的成员,按照规则,将int a放在偏移量为0处,

然后就是镶嵌结构体struct R s;,其自身成员的最大对齐数为4,那么其对齐数为4,那找4的整数倍处即:数字4处。然后是char b对齐数为1,往后就是到数字20处,最后short c 对齐数为2,往后数字20处.完成分布我们找最大对齐数,为4那么其结构体大小为4的整数倍,最后取24为结构体大小。


讲到这里肯定是很疑惑为什么会存在内存对齐,对齐之后有些空间是浪费的。那么它存在就会有它存在的意义。简单来说就是:

结构体内存对齐是为了提高计算机的存储和访问效率。在现代计算机中,内存空间通常按照字节(byte)来划分,但各个硬件平台对存储空间的处理方式存在很大差异。
 
以32位的CPU为例,它一次能处理32bit(4字节)的数据,那么CPU就命令地址总线一次性读取4字节的数据,即每次的步长都为4字节,只对地址是4的整倍数的地址进行寻址,比如:0、4、8、100等。如果一个变量的地址刚好在一个寻址步长内,那么一次寻址就可以读取到该变量的值。但如果变量跨了步长存储,就需要寻址两次甚至多次,然后再进行拼接才能获取到变量的值,效率明显就低了。
 
为了避免这种情况,编译器会进行内存对齐,以保证变量的地址在一个寻址步长内,从而提高程序的运行效率。

总的来说:就是用空间换效率。


那么文章到这就结束了。

为今天努力的自己打个卡,留个痕迹吧

                                                                      2024.03.29     小闭

                                                    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/291925.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux之权限管理

Linux 下有两种用户:超级用户( root )、普通用户。 超级用户:可以再linux系统下做任何事情,不受限制 普通用户:在linux下做有限的事情。 超级用户的命令提示符是“#”,普通用户的命令提示符是…

【Qt 学习笔记】Day1 | Qt 开发环境的搭建

博客主页:Duck Bro 博客主页系列专栏:Qt 专栏关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ Day1 | Qt 开发环境的搭建 文章编号:Qt 学习笔记 / 02 文…

mysql进阶知识总结

1.存储引擎 1.1MySQL体系结构 1).连接层 最上层是一些客户端和链接服务,包含本地sock通信和大多数基于客户端/服务端工具实现的类似于TCP/IP的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程池的概念,为通过认证…

Linux第84步_了解Linux中断及其函数

1、中断号 中断号又称中断线&#xff0c;每个中断都有一个中断号&#xff0c;通过中断号即可区分不同的中断。 2、Linux中断API函数 需要包含头文件“#include <linux/interrupt.h>” 1)、在使用某个中断功能的时候&#xff0c;需要执行“申请中断” int request_irq(…

左手医生:医疗 AI 企业的云原生提效降本之路

相信这样的经历对很多人来说并不陌生&#xff1a;为了能到更好的医院治病&#xff0c;不惜路途遥远奔波到大城市&#xff1b;或者只是看个小病&#xff0c;也得排上半天长队。这些由于医疗资源分配不均导致的就医问题已是老生长谈。 云计算、人工智能、大数据等技术的发展和融…

阿里云安全产品简介,Web应用防火墙与云防火墙产品各自作用介绍

在阿里云的安全类云产品中&#xff0c;Web应用防火墙与云防火墙是用户比较关注的安全类云产品&#xff0c;二则在作用上并不是完全一样的&#xff0c;Web应用防火墙是一款网站Web应用安全的防护产品&#xff0c;云防火墙是一款公共云环境下的SaaS化防火墙&#xff0c;本文为大家…

海量数据处理项目-账号微服务和流量包数据库表+索引规范(下)

海量数据处理项目-账号微服务和流量包数据库表索引规范&#xff08;下&#xff09; 第2集 账号微服务和流量包数据库表索引规范讲解《下》 简介&#xff1a;账号微服务和流量包数据库表索引规范讲解 账号和流量包的关系&#xff1a;一对多traffic流量包表思考点 海量数据下每…

Spring依赖注入思想分析

Spring 依赖注入思想分析 文章目录 Spring 依赖注入思想分析一、前言二、控制反转&#xff08;Inversion of Control&#xff09;1. 代码依赖初始化问题2. 匿名内部类解决方案3. 创建接口实现类方案4. 问题深入5. 定义父类解决问题1方案6. 控制反转解决问题2方案 三、依赖注入&…

const在指针中的作用以及*p在各种写法中分别代表什么含义

const在指针中起固定的作用&#xff0c;在不同的写法中其效果也有所区别&#xff0c;具体如下&#xff1a; 1、int* const p固定的是指针p指向的地址。 2、int const *p固定的是指针p指向地址中储存的内容。 例&#xff1a; 以上操作在编译器中执行不了&#xff0c;会报错。…

武汉星起航:助力跨境电商新手,打造高质量亚马逊产品评价新策略

在今日全球化与数字化浪潮的推动下&#xff0c;跨境电商已成为推动国际贸易发展的新动力。然而&#xff0c;随着市场竞争的日益激烈&#xff0c;如何让自己的产品在亚马逊平台上脱颖而出&#xff0c;成为了众多跨境电商新手面临的重要问题。武汉星起航电子商务有限公司&#xf…

【AI系列】Python NLTK 库和停用词处理的应用

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

Codeforces Round 934 (Div. 2) D. Non-Palindromic Substring

题目 思路&#xff1a; #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back #define fi first #define se second #define lson p << 1 #define rson p << 1 | 1 const int maxn 1e6 5, inf 1e9, maxm 4e4 5; co…

【ERP原理与应用】用友U8实验

实验一、系统管理与基础设置 实验内容&#xff1a; 一、核算体系的建立 好友软件公司是一家软件制造和系统集成企业&#xff0c;其产品面向国内外市场&#xff0c;自 2019 年 3 月公司开始使用 ERP 软件管理业务。软件操作员有三位&#xff0c;黄红是账套 主管&#xff0c;张…

【C++】string类(常用接口)

&#x1f308;个人主页&#xff1a;秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343&#x1f525; 系列专栏&#xff1a;http://t.csdnimg.cn/eCa5z 目录 修改操作 push_back append operator assign insert erase replace c_str find string类非成…

量化交易入门(二十五)什么是RSI,原理和炒股实操

前面我们了解了KDJ&#xff0c;MACD&#xff0c;MTM三个技术指标&#xff0c;也进行了回测&#xff0c;结果有好有坏&#xff0c;今天我们来学习第四个指标RSI。RSI指标全称是相对强弱指标(Relative Strength Index),是通过比较一段时期内的平均收盘涨数和平均收盘跌数来分析市…

论文研读:Transformers Make Strong Encoders for Medical Image Segmentation

论文&#xff1a;TransUNet&#xff1a;Transformers Make Strong Encoders for Medical Image Segmentation 目录 Abstract Introduction Related Works 各种研究试图将自注意机制集成到CNN中。 Transformer Method Transformer as Encoder 图像序列化 Patch Embed…

Net8 ABP VNext完美集成FreeSql、SqlSugar,实现聚合根增删改查,完全去掉EFCore

没有基础的&#xff0c;请参考上一篇 彩蛋到最后一张图里找 参考链接 结果直接上图&#xff0c;没有任何业务代码 启动后&#xff0c;已经有了基本的CRUD功能&#xff0c;还扩展了批量删除&#xff0c;与动态查询 动态查询截图&#xff0c;支持分页&#xff0c;排序 实现原理…

消息队列经典应用场景

笔者心中,消息队列,缓存,分库分表是高并发解决方案三剑客。 在职业生涯中,笔者曾经使用过 ActiveMQ 、RabbitMQ 、Kafka 、RocketMQ 这些知名的消息队列 。 这篇文章,笔者结合自己的真实经历,和大家分享消息队列的七种经典应用场景。 1 异步&解耦 笔者曾经负责某电…

Charles抓包配置代理手机连接

Charles下载地址&#xff1a; Charles_100519.zip官方版下载丨最新版下载丨绿色版下载丨APP下载-123云盘123云盘为您提供Charles_100519.zip最新版正式版官方版绿色版下载,Charles_100519.zip安卓版手机版apk免费下载安装到手机,支持电脑端一键快捷安装https://www.123pan.com…

Scala介绍与环境搭建

Scala环境搭建与介绍 一、Scala环境搭建 1、环境准备与下载 2、验证Scala 3、IDEA新建项目&#xff0c;配置Scala&#xff0c;运行Hello world 二、Scala介绍 1、Scala 简介 2、Scala 概述 一、Scala环境搭建 1、环境准备与下载 JDK1.8 Java Downloads | Oracle 下载需求版本…