YOLOV5训练自己的数据集教程(万字整理,实现0-1)

文章目录

一、YOLOV5下载地址

二、版本及配置说明

三、初步测试

四、制作自己的数据集及转txt格式

1、数据集要求

2、下载labelme

3、安装依赖库

4、labelme操作

五、.json转txt、.xml转txt

六、修改配置文件

1、coco128.yaml->ddjc_parameter.yaml

2、yolov5x.yaml->ddjc_model.yaml

八、调train和detect的参数并开始训练

1、在train.py,寻找函数def parse_opt(known=False),更改参数

2、train运行结果

3、在detect.py,寻找函数def parse_opt(),更改参数

 YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。YOLOv5是Glenn Jocher等人研发,它是Ultralytics公司的开源项目。YOLOv5根据参数量分为了n、s、m、l、x五种类型,其参数量依次上升,当然了其效果也是越来越好。从2020年6月发布至2022年11月已经更新了7个大版本,在v7版本中还添加了语义分割的功能。

一、YOLOV5下载地址

GitHub官方下载(推荐):https://github.com/ultralytics/yolov5

二、版本及配置说明

  • 我是用cpu训练的,如果有条件的可以使用gpu进行训练,训练速度会相差10倍。
  • 当然,用gpu下载pytorch的时候要下载cuda版本。
  • 我采用的是Anaconda+Pycharm的配置,大家要了解一些关于pip和conda的指令,方便管理包和环境。
  • 当我们下好yolov5后,可以发现有一个requirements.txt文件,使用Anaconda Prompt,切换到Yolov5的位置,pip install -r requirements.txt即可一步到位全部下完。下面是requirements.txt文件的内容。
# YOLOv5 requirements
# Usage: pip install -r requirements.txt# Base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.1
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1  # Google Colab version
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0
protobuf<4.21.3  # https://github.com/ultralytics/yolov5/issues/8012# Logging -------------------------------------
tensorboard>=2.4.1
# wandb# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0# Export --------------------------------------
# coremltools>=4.1  # CoreML export
# onnx>=1.9.0  # ONNX export
# onnx-simplifier>=0.3.6  # ONNX simplifier
# scikit-learn==0.19.2  # CoreML quantization
# tensorflow>=2.4.1  # TFLite export
# tensorflowjs>=3.9.0  # TF.js export
# openvino-dev  # OpenVINO export# Extras --------------------------------------
ipython  # interactive notebook
psutil  # system utilization
thop  # FLOPs computation
# albumentations>=1.0.3
# pycocotools>=2.0  # COCO mAP
# roboflows

三、初步测试

配置完成后,运行detect.py,如果一切正常,那么可以在runs/detect/exp中能发现被处理过的标签,就成功了,如果没有显示下图,那么可能是有的库的版本不对应,可以根据报错提示用pip uninstall 包后下载相应版本,要多试,因为有的库与库之间是相互联系的。

四、制作自己的数据集及转txt格式

1、数据集要求

我的数据集为跌倒检测方面的,有1000张,上千张时处理后效果较好。

在yolov5中新建一个ddjc的文件夹,包含以下文件夹:

2、下载labelme

这个是对图片进行标注的工具

下载地址:GitHub - labelmeai/labelme: Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation). - labelmeai/labelmeicon-default.png?t=N7T8https://github.com/wkentaro/labelme

下载压缩包后解压即可。

3、安装依赖库

在Anaconda Prompt里安装pyqt5和labelme,pyqt5是labelme的依赖项。

pip install pyqt5
pip install labelme

4、labelme操作

然后在Anaconda Prompt里输入labelme,打开界面如下,右击,点击rectangle,即画矩形框,框选你要识别训练的东西。

框选之后输入标签的名字,注意,可以框选多个作为标签。框选完一张图后保存,然后接着下一张图。保存的文件格式是.json

五、.json转txt、.xml转txt

yolov5只识别txt,所以要将标注后的数据集转化为txt。

转换的时候可能会有问题,可以移步我的这篇博客统计XML文件内标签的种类和其数量及将xml格式转换为yolov5所需的txt格式-CSDN博客
我用的是公开的数据集,格式为.xml,转换时也遇到了目录和无法统计标签的过程,但都得以解决。

在你设置好的绝对路径下新建转换py文件,代码为:

.xml-txt

import xml.etree.ElementTree as ETimport pickle
import os
from os import listdir, getcwd
from os.path import join
import globclasses = ['fall', 'no  fall', 'no fall', 'nofall']def convert(size, box):dw = 1.0 / size[0]dh = 1.0 / size[1]x = (box[0] + box[1]) / 2.0y = (box[2] + box[3]) / 2.0w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)def convert_annotation(image_name):in_file = open('./labels/train1/' + image_name[:-3] + 'xml')  # xml文件路径out_file = open('./labels/train/' + image_name[:-3] + 'txt', 'w')  # 转换后的txt文件存放路径f = open('./labels/train1/' + image_name[:-3] + 'xml')xml_text = f.read()root = ET.fromstring(xml_text)f.close()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):cls = obj.find('name').textif cls not in classes:print(cls)continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()if __name__ == '__main__':for image_path in glob.glob("./images/train/*.jpg"):  # 每一张图片都对应一个xml文件这里写xml对应的图片的路径image_name = image_path.split('\\')[-1]convert_annotation(image_name)

.json-txt

import json
import osname2id =  {'hero':0,'sodier':1,'tower':2}#标签名称def convert(img_size, box):dw = 1. / (img_size[0])dh = 1. / (img_size[1])x = (box[0] + box[2]) / 2.0 - 1y = (box[1] + box[3]) / 2.0 - 1w = box[2] - box[0]h = box[3] - box[1]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)def decode_json(json_floder_path, json_name):txt_name = 'C:\\Users\\86189\\Desktop\\' + json_name[0:-5] + '.txt'#存放txt的绝对路径txt_file = open(txt_name, 'w')json_path = os.path.join(json_floder_path, json_name)data = json.load(open(json_path, 'r', encoding='gb2312',errors='ignore'))img_w = data['imageWidth']img_h = data['imageHeight']for i in data['shapes']:label_name = i['label']if (i['shape_type'] == 'rectangle'):x1 = int(i['points'][0][0])y1 = int(i['points'][0][1])x2 = int(i['points'][1][0])y2 = int(i['points'][1][1])bb = (x1, y1, x2, y2)bbox = convert((img_w, img_h), bb)txt_file.write(str(name2id[label_name]) + " " + " ".join([str(a) for a in bbox]) + '\n')if __name__ == "__main__":json_floder_path = ''#存放json的文件夹的绝对路径json_names = os.listdir(json_floder_path)for json_name in json_names:decode_json(json_floder_path, json_name)

转换完成后的txt文件:

第一个数字是数据集中第0个种类,其余均是与坐标相关的值。有几个标签就有几个种类。 

六、修改配置文件

1、coco128.yaml->ddjc_parameter.yaml

在yolov5/data/coco128.yaml中先复制一份,粘贴到ddjc中,改名为ddjc_parameter.yaml(意义为ddjc的参数配置)

ddjc_parameter.yaml文件需要修改的参数是nc与names。nc是标签名个数,names就是标签的名字,跌倒检测有4个标签,标签名字都如下:['fall', 'no  fall', 'no fall', 'nofall']

路径解释:如何正确使用机器学习中的训练集、验证集和测试集?-CSDN博客

2、yolov5x.yaml->ddjc_model.yaml

yolov5有4种配置,不同配置的特性如下,我选择yolov5x,效果较好,但是训练时间会很长。

在yolov5/models先复制一份yolov5x.yaml到ddjc,更名为ddjc_model.yaml(意为模型),只将如下的nc修改为标签的个数。

八、调train和detect的参数并开始训练

1、在train.py,寻找函数def parse_opt(known=False),更改参数

parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5x', help='initial weights path')    # 修改处 初始权重
parser.add_argument('--cfg', type=str, default=ROOT /'ddjc/ddjc_model.yaml', help='model.yaml path')  # 修改处 训练模型文件
parser.add_argument('--data', type=str, default=ROOT /'ddjc/ddjc_parameter.yaml', help='dataset.yaml path')  # 修改处 数据集参数文件
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')  # 超参数设置
parser.add_argument('--epochs', type=int, default=50)  # 修改处 训练轮数
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')  # 修改处 batch size
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=384, help='train, val image size (pixels)')# 修改处 图片大小
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
parser.add_argument('--noplots', action='store_true', help='save no plot files')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')#修改处,选择
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--workers', type=int, default=10, help='max dataloader workers (per RANK in DDP mode)')#修改处

修改处的解释:

  • 我们训练的初始权重的位置,是以.pt结尾的文件
  • 训练模型文件,在本项目中对应ddjc_model.yaml;
  • 数据集参数文件,在本项目中对于ddjc_parameter.yaml;
  • 超参数设置,是人为设定的参数。包括学习率,不用改;
  • 训练轮数,决定了训练时间与训练效果。如果选择训练模型是yolov5x.yaml,那么大约200轮数值就稳定下来了(收敛),我设置的50轮,因为这大概已经需要25h的时间了;
  • 批量处理文件数,这个要设置地小一些,否则会out of memory。这个决定了我们训练的速度
  • 图片大小,虽然我们训练集的图片是已经固定下来了,但是传入神经网络时可以resize大小,太大了训练时间会很长,且有可能报错,这个根据自己情况调小一些;
  • 断续训练,如果说在训练过程中意外地中断,那么下一次可以在这里填True,会接着上一次runs/exp继续训练
  • GPU加速,填0是电脑默认的CUDA,前提是电脑已经安装了CUDA才能GPU加速训练,安装过程可查博客,填cpu就是用gpu进行训练。
  • 多线程设置,越大读取数据越快,但是太大了也会报错,因此也要根据自己状况填小。

2、train运行结果

结果保存在runs/train/exp中,多次训练就会有exp1、exp2,我这里训练到第五轮了。

best.pt和last.pt是我们训练出来的权重文件,用于detect.py。last是最后一次的训练结果,best是效果最好的训练结果(只是看起来,但是泛化性不一定强)。

3、在detect.py,寻找函数def parse_opt(),更改参数

parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT /'runs/train/exp7/weights/last.pt', help='model path(s)')  # 修改处 权重文件
parser.add_argument('--source', type=str, default=ROOT /'wzry/datasets/images/test/SVID_20210726_111258_1.mp4', help='file/dir/URL/glob, 0 for webcam')# 修改处 图像、视频或摄像头
parser.add_argument('--data', type=str, default=ROOT / 'ddjc/ddjc_parameter.yaml', help='(optional) dataset.yaml path')  # 修改处 参数文件
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')  # 修改处 高 宽
parser.add_argument('--conf-thres', type=float, default=0.50, help='confidence threshold')  # 置信度
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')# 非极大抑制
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')  # 修改处

运行结果在runs/detect/exp中。

九、我训练过程中存在并调试好的一些问题

请移步:YOLOv5训练过程中的各种报错-CSDN博客

希望能帮到大家,若需要数据集和训练好的模型,请留言。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/293202.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Lazy ORM 框架学习】

Gitee 点赞关注不迷路 项目地址 快速入门 模块所属层级描述快照版本正式版本wu-database-lazy-lambdalambda针对不同数据源wu-database-lazy-orm-coreorm 核心orm核心处理wu-database-lazy-sqlsql核心处理成处理sql解析、sql执行、sql映射wu-elasticsearch-starterESESwu-hb…

[图像处理] MFC载入图片并进行二值化处理和灰度处理及其效果显示

文章目录 工程效果重要代码完整代码参考 工程效果 载入图片&#xff0c;并在左侧显示原始图片、二值化图片和灰度图片。 双击左侧的图片控件&#xff0c;可以在右侧的大控件中&#xff0c;显示双击的图片。 初始画面&#xff1a; 载入图片&#xff1a; 双击左侧的第二个控件…

设计模式学习笔记 - 设计模式与范式 -行为型:2.观察者模式(下):实现一个异步非阻塞的EventBus框架

概述 《1.观察者模式&#xff08;上&#xff09;》我们学习了观察者模式的原理、实现、应用场景&#xff0c;重点节介绍了不同应用场景下&#xff0c;几种不同的实现方式&#xff0c;包括&#xff1a;同步阻塞、异步非阻塞、进程内、进程间的实现方式。 同步阻塞最经典的实现…

Android进阶学习:移动端开发重点学习的十点,不能再得过且过的写业务代码了

最近有朋友问我&#xff1a;“安卓开发是不是没人要了&#xff0c;除了画 UI 别的都不会怎么办&#xff1f;” 考虑到这可能是很多人共同的疑问&#xff0c;决定简单写一下。 说了很多遍了&#xff0c;**不是安卓开发没人要了&#xff0c;是初级安卓没人要了。**现在还在大量…

ES的RestClient相关操作

ES的RestClient相关操作 Elasticsearch使用Java操作。 本文仅介绍CURD索引库和文档&#xff01;&#xff01;&#xff01; Elasticsearch基础&#xff1a;https://blog.csdn.net/weixin_46533577/article/details/137207222 Elasticsearch Clients官网&#xff1a;https://ww…

C#,按类型删除指定文件的工具软件

点击下载本文软件&#xff08;积分&#xff09;&#xff1a; https://download.csdn.net/download/beijinghorn/89059141https://download.csdn.net/download/beijinghorn/89059141 下载审核通过之前&#xff0c;请从百度网盘下载&#xff08;无积分&#xff09;&#xff1a;…

【Linux 10】环境变量

文章目录 &#x1f308; Ⅰ 命令行参数⭐ 1. main 函数的参数⭐ 2. main 函数参数的意义⭐ 3. 查看 argv 数组的内容⭐ 4. 命令行参数结论⭐ 5. 为什么要有命令行参数⭐ 6. 命令行参数传递由谁执行 &#x1f308; Ⅱ 环境变量基本概念⭐ 1. 常见环境变量 &#x1f308; Ⅲ 查看…

鸿蒙OS开发实战:【网络管理HTTP数据请求】

一、场景介绍 应用通过HTTP发起一个数据请求&#xff0c;支持常见的GET、POST、OPTIONS、HEAD、PUT、DELETE、TRACE、CONNECT方法。 二、 接口说明 HTTP数据请求功能主要由http模块提供。 使用该功能需要申请ohos.permission.INTERNET权限。 涉及的接口如下表&#xff0c;…

Unix中的进程和线程-1

目录 1.如何创建一个进程 2.如何终止进程 2.2遗言函数 3.进程资源的回收 4.孤儿进程和僵尸进程 孤儿进程 (Orphan Process)&#xff1a; 僵尸进程 (Zombie Process)&#xff1a; 代码示例&#xff1a; 5. 进程映像的更新 在Linux中&#xff0c;进程和线程是操作系统进行工作调…

保研线性代数机器学习基础复习2

1.什么是群&#xff08;Group&#xff09;&#xff1f; 对于一个集合 G 以及集合上的操作 &#xff0c;如果G G-> G&#xff0c;那么称&#xff08;G&#xff0c;&#xff09;为一个群&#xff0c;并且满足如下性质&#xff1a; 封闭性&#xff1a;结合性&#xff1a;中性…

从零开始的软件开发实战:互联网医院APP搭建详解

今天&#xff0c;笔者将以“从零开始的软件开发实战&#xff1a;互联网医院APP搭建详解”为主题&#xff0c;深入探讨互联网医院APP的开发过程和关键技术。 第一步&#xff1a;需求分析和规划 互联网医院APP的主要功能包括在线挂号、医生预约、医疗咨询、健康档案管理等。我们…

金融衍生品市场

金融衍生品市场 衍生金融品的作用衍生金融工具远期合约期货合约期权 衍生金融品的作用 套期保值&#xff08;Hedging&#xff09; 组合多头头寸(long position)与空头头寸(short position)例&#xff1a;股票与股指期货 投机 衍生金融工具 远期合约 定义&#xff1a;在将来…

论文笔记 - :MonoLSS: Learnable Sample Selection For Monocular 3D Detection

论文笔记✍MonoLSS: Learnable Sample Selection For Monocular 3D Detection &#x1f4dc; Abstract &#x1f528; 主流做法限制 &#xff1a; 以前的工作以启发式的方式使用特征来学习 3D 属性&#xff0c;没有考虑到不适当的特征可能会产生不利影响。 &#x1f528; 本…

Optimizer神经网络中各种优化器介绍

1. SGD 1.1 batch-GD 每次更新使用全部的样本&#xff0c;注意会对所有的样本取均值&#xff0c;这样每次更新的速度慢。计算量大。 1.2 SGD 每次随机取一个样本。这样更新速度更快。SGD算法在于每次只去拟合一个训练样本&#xff0c;这使得在梯度下降过程中不需去用所有训…

css3之3D转换transform

css3之3D转换 一.特点二.坐标系三.3D移动&#xff08;translate3d)1.概念2.透视&#xff08;perpective)(近大远小&#xff09;&#xff08;写在父盒子上&#xff09; 四.3D旋转&#xff08;rotate3d)1.概念2.左手准则3.呈现&#xff08;transfrom-style)&#xff08;写父级盒子…

智能革命:ChatGPT3.5与GPT4.0的融合,携手DALL·E 3和Midjourney开启艺术新纪元

迷图网(kk.zlrxjh.top)是一个融合了顶尖人工智能技术的多功能助手&#xff0c;集成了ChatGPT3.5、GPT4.0、DALLE 3和Midjourney等多种智能系统&#xff0c;为用户提供了丰富的体验。以下是对这些技术的概述&#xff1a; ChatGPT3.5是由OpenAI开发的一个自然语言处理模型&#x…

KeepAlived使用介绍

目录 1、Introduce 2、基本使用 &#xff08;1&#xff09;安装 &#xff08;2&#xff09;配置文件 &#xff08;3&#xff09;使用教程 1、Introduce keepalived是一个用于实现高可用性和负载均衡的开源软件。它提供了一种轻量级的方式来管理多个服务器&#xff0c;并确保…

使用Detours进行HOOK

文章目录 Detours介绍Detours配置Detours进行Sleep Hook Detours介绍 Detours是微软研究院开发的一款软件工具&#xff0c;用于Windows平台上的应用程序重定向和修改。 它可以在运行时修改应用程序的执行路径&#xff0c;允许开发人员注入自定义代码来改变应用程序的 行为&…

数据分析之Tebleau 的度量名称和度量值

度量名称 包含所有的维度 度量值 包含所有的度量 度量名称包含上面所有的维度&#xff0c;度量值包含上面所有的度量 当同时创建两个或两个以上度量或维度时&#xff0c;会自动创建度量名称和度量值 拖入省份为行(这会是还没有值的) 可以直接将销售金额拖到数值这里 或者将销售…

鸿蒙OS开发实例:【ArkTS类库多线程I/O密集型任务开发】

使用异步并发可以解决单次I/O任务阻塞的问题&#xff0c;但是如果遇到I/O密集型任务&#xff0c;同样会阻塞线程中其它任务的执行&#xff0c;这时需要使用多线程并发能力来进行解决。 I/O密集型任务的性能重点通常不在于CPU的处理能力&#xff0c;而在于I/O操作的速度和效率。…