【NLP笔记】大模型prompt推理(提问)技巧

文章目录

  • prompt概述
  • 推理(提问)技巧
    • 基础prompt构造技巧
    • 进阶优化技巧
    • prompt自动优化

参考链接:

  • Pre-train, Prompt, and Predict: A Systematic Survey of
    Prompting Methods in Natural Language Processing
  • 预训练、提示和预测:NLP中提示的系统综述

随着LLM时代的到来,通过prompt直接对话语言模型,得到预期结果,解析后用于实际应用的模式也随之推广。那么什么是prompt,如何用好prompt去激发语言模型的潜力,成为了预训练语言模型底座+prmpt-tuning范式的重要议题。

prompt概述

prompt通俗来说就是通过设计自然语言提示词,让预训练的语言模型“回忆”预测出学习到的内容,并对提示词的问题做出解答,具体步骤如下:

  1. 设计模版:设计一个自然语言模版,该模版中一个位置用于存放输入文本[X],一个位置用于存放输出文本[Z];根据模版构造问答样本,如设计模版为"[X] The movie is [Z]“,输入内容[X]为"I love this movie.”,预测结果的位置为[Z]存放的位置,通过这样的模式去构造样本;
    • 中间位置的为完形填空prompt,还有前缀、后缀的prompt形式;
    • prompt并非局限于自然语言,也可以是向量化后的token;
    • [X] 和 [Z] 槽位数量可以根据任务需要灵活调整;

在这里插入图片描述

  1. 搜索回答:这一步主要经大模型推理预测找到得分最高的结果 z ˆ zˆ zˆ。通过预训练的大模型可能会有一组允许的 Z Z Z(生成任务可以是任意文本,分类任务可以是一组单词)被预测出来,函数 f f i l l ( x ′ , z ) f_{fill}(x', z) ffill(x,z) x ′ x' x为根据模版构造的未填充结果的文本)表示用潜在回答 z z z填充提示 x ′ x' x中的位置 [Z],得到的结果一般被称为 filled prompt,如果填充的是正确回答,则被称为 answered prompt,具体表现为,通过使用预训练的大模型计算会从相应filled prompt 从可能的回答集合 Z Z Z中找出概率最大的结果 z ˆ zˆ zˆ,得到answered prompt;
    在这里插入图片描述
  2. 映射回答:最后,基于得分最高的回答 z ˆ zˆ zˆ 到得分最高的输出 y ˆ yˆ yˆ,尤其是在分类任务中需要进行这样的结果映射(比如excellent、fabulous、wonderful 等近义词可以映射到某一情感类别);

推理(提问)技巧

prompt采用完形填空、前缀还是后缀的形式,是预训练底座或者微调时需要考虑的,当前就总结基于大模型完成推理(提问)时,该如何设计prompt以及使用什么样的技巧才能更好地激发大模型的潜能。

基础prompt构造技巧

当提问的方式与大模型的语料库更接近时,模型的预测效果可能会更好,不过大多数大模型的语料库都是非公开的,好在都是采用类似的模版设计,因此能够总结出一定的规律。
想要在推理时得到较理想的预测结果,结合很多prompt经验来看,一个合理的架构就包含了构造prompt所需的技巧,下面介绍一个ChatGPT3官方提出的prompt构造模版CRISPE(Capacity and Role、Insight、Statement、Personality、Experiment),具体为:

构造步骤技巧描述示例
Capacity and Role指定角色和能力“假设你是一个机器学习架构开发专家,并且还是一个资深博客作家。”
Insight给定一些背景信息“博客的受众是有兴趣了解机器学习最新进展的技术专业人士。”
Statement说明任务目标“全面概述最流行的机器学习框架,包括它们的优点和缺点。包括现实生活中的例子和案例研究,以说明这些框架如何在各个行业中成功使用。”
Personality控制输出格式与风格“在回复时,请使用 Andrej Karpathy、Francois Chollet、Jeremy Howard 和 Yann LeCun 的混合写作风格。”
Experiment指定输出结果的要求,如单输出/多输出“给出多个输出示例”

上述模版包含了很多构造prompt的技巧,不同的模版侧重的技巧可能有差异,但是都是可以用来尝试的范式,其他更多的模版可以参考:9个prompt构造模版范式;

还有很多prompt的设计技巧,避免模型出现幻觉等,更好地得到目标输出结果,比较基础简单的技巧如:

  • 提供更多的细节/背景信息;
  • 描述更清晰,避免模糊的表达;
  • 多尝试不同的prompt构造范式,选取最适合任务的一种提问方式;
  • 采用效果好的prompt范式,多次调用模型,选出投票结果(self-consistency);
  • 把单个问题拆分成多个子问题,一步一步地得到最终结果(least to most);
  • 知识增强,通过检索引入外部知识,构造prompt,提升效果(RAG,Retrieval Augmented Generation);
  • 把问题拆分成不同的问题后,逐步进行提问(self-ask)等;
# 采用langchain生成self-ask示例
# pip install langchain
# pip install openai
# pip install google-search-resultsimport os
os.environ['OPENAI_API_KEY'] = str("xxxxxxxxxxxxxxxxxxxx")
os.environ["SERPAPI_API_KEY"] = str("xxxxxxxxxxxxxxxxxxxx")from langchain import OpenAI, SerpAPIWrapper
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentTypellm = OpenAI(temperature=0)
search = SerpAPIWrapper()
tools = [Tool(name="Intermediate Answer",func=search.run,description="useful for when you need to ask with search",)
]self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True
)
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?"
)
# 输出self-ask示例
#> Entering new AgentExecutor chain...
# Yes.
# Follow up: Who is the reigning men's U.S. Open champion?
# Intermediate answer: Carlos Alcaraz
# Follow up: Where is Carlos Alcaraz from?
# Intermediate answer: El Palmar, Spain
# So the final answer is: El Palmar, Spain
# > Finished chain.
# El Palmar, Spain

更多技巧可以参考以下内容:

  • OpenAI官方技巧教程
  • Reasoning with Language Model Prompting: A Survey
  • Awesome-Prompt-Engineering
  • 12 Prompt Engineering Techniques

如果模型的参数是可以通过入口传递的,也可以通过参数设置调整模型的预测结果:

  1. 温度系数(Temperature):控制模型输出随机性的参数。它影响模型在选择下一个词时的确定性,越接近1时模型的输出越随机;
  2. 多样性(top p):采样策略,模型仅从累计概率超过指定阈值p的最可能的词中进行选择。设置 top-p 为0.9,模型将从概率最高的一小部分词中选择,这些词的累计概率加起来接近0.9。;
  3. 重复惩罚(penalty):控制模型重复内容的输出,在长篇回答或生成文章时,使用重复惩罚可以帮助减少冗余和重复。

进阶优化技巧

上面提到的链接里有很多更细节/高阶的优化技巧,下面主要是从两种现在应用比较广泛的范式出发来介绍进阶的优化技巧,能更好地解决模型产生幻觉的问题。

把问题拆分成一步一步的小问题,并逐步进行解答,直到得到最终的目标结果。中间过程结合RAG,就能够产出更稳定、准确性更高的模型预测结果;

现在又很多AI-Agent(如:LangChain)集成了这些大模型推理优化技巧,还包含很多底层数据处理和检索等能力,可以协助使用者更好地进行大模型应用,提升模型的预测效果;

  • CoT
    论文链接:Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
    是一种引导大模型进行任务分解的提问方法,作法是给出任务分解的少量示例,利用大模型的上下文学习能力(in-context learning)引导模型进行任务拆解,并得到目标结果,如图所示:
    在这里插入图片描述
  • ReAct(Reason+Act)
    论文链接:React: Synergizing Reasoning and Acting in
    Language Models
    引导大模型将问题进行更细致的拆分,在不同的子问题阶段拆分出Thought、Act和Observation三步,分步骤去检索/LLM推理并解答每个子步骤的问题,把各个问题的流程拼接成大模型的最终输入,让模型更有规划地去解决目标问题;
    在这里插入图片描述
  • ReWOO(Reasoning WithOut Observation)
    论文链接:ReWOO: Decoupling Reasoning from Observations
    for Efficient Augmented Language Models
    去掉了ReAct处理手段中的Observation阶段,并且把Thought、Act转换成Planner、Worker和Solver三个阶段,把问题拆分成不同的子问题(Planner),根据子问题去检索/LLM推理对应的结果(Worker),拼接各个子问题的问答,输入给大模型得到目标问题的预测结果;
    在这里插入图片描述
  • ToT(Tree of Thought)
    论文链接:Tree of Thoughts: Deliberate Problem Solving
    with Large Language Models
    ToT是结合了多种优化技巧的一种优化方案,在解决复杂问题时具有更大的优势。CoT是基于问题将问题划分成多个子步骤,并通过检索或者向大模型提问的方式得到各个步骤的结果,而CoT则是在会基于初始问题拆分出多个一级问题,每个问题会通过检索/LLM推理的方式解决,以此类推,就可以得到一颗树结构,最终的结果通过广度优先搜素、深度优先搜索等方式来拼接每一步的内容,最终输入给大模型得到目标答案;
    在这里插入图片描述
  • GoT(Graph of Thought)
    论文链接:Graph of Thoughts: Solving Elaborate Problems with Large Language Models
    在ToT的基础上引入了循环refine的结构,特定节点上可以想循环神经网络一样不断更新结果,使得整个过程的调整空间更大;
    在这里插入图片描述

prompt自动优化

还有一些转为优化prompt设计的架构,可以帮你优化提问的文本内容:

  • AutoPrompt:Eliciting Knowledge from Language Models with Automatically Generated Prompts
  • PromptAgent: Strategic Planning with
    Language Models Enables Expert-Level
    Prompt Optimization
  • Guiding Large Language Models via Directional Stimulus Prompting
  • Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/293537.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何使用Windows电脑部署Lychee私有图床网站并实现无公网IP远程管理本地图片

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL| ​💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-MSVdVLkQMnY9Y2HW {font-family:"trebuchet ms",verdana,arial,sans-serif;f…

HarmonyOS ArkTS 骨架屏加载显示(二十五)

目录 前言1、骨架屏代码显示2、代码中引用3、效果图展示 前言 所谓骨架屏,就是在页面进行耗时加载时,先展示的等待 UI, 以告知用户程序目前正在运行,稍等即可。 等待的UI大部分是 loading 转圈的弹窗,有的是自己风格的小动画。其实…

《QDebug 2024年3月》

一、Qt Widgets 问题交流 1. 二、Qt Quick 问题交流 1.Qt5 ApplicationWindow 不能使用父组件 Window 的 transientParent 属性 ApplicationWindow 使用 transientParent 报错: "ApplicationWindow.transientParent" is not available due to compone…

亚马逊自养号测评:风险剖析与防范策略全解析

亚马逊平台竞争激烈,美站乃至全球市场的卖家为提升产品排名和销量,纷纷用起了自养号测评。然而,自养号测评技术因其较高的技术门槛,使得许多卖家因缺乏对其原理和底层环境搭建的了解,而面临账号关联和封禁的风险。本文…

SpringBoot常见注解有哪些

Spring Boot的核心注解是SpringBootApplication , 他由几个注解组成 : ● SpringBootConfiguration: 组合了- Configuration注解,实现配置文件的功能; ● EnableAutoConfiguration:打开自动配置的功能,也可以关闭某个自…

实景三维技术:开启自然资源管理的新篇章

随着科技的不断进步,实景三维技术已经在多个领域得到了广泛的应用。而在自然资源管理领域,实景三维技术更是发挥着越来越重要的作用。本文将介绍实景三维在自然资源管理领域的应用,探讨其带来的优势和变革。一、什么是实景三维技术&#xff1…

Python多任务处理---多线程

引入 生活中,我们在电脑上打开了一个word, 这个word对操作系统来说就是一个进程。我们在进行word操作的时候,比如在你打字的时候,该word同时可以进行文字检查。发现了没,在同一个进程中,我们也可以进行同时操作。…

Rust 02.控制、引用、切片Slice、智能指针

1.控制流 //rust通过所有权机制来管理内存,编译器在编译就会根据所有权规则对内存的使用进行 //堆和栈 //编译的时候数据的类型大小是固定的,就是分配在栈上的 //编译的时候数据类型大小不固定,就是分配堆上的 fn main() {let x: i32 1;{le…

分类任务中的评估指标:Accuracy、Precision、Recall、F1

概念理解 T P TP TP、 T N TN TN、 F P FP FP、 F N FN FN精度/正确率( A c c u r a c y Accuracy Accuracy) 二分类查准率 P r e c i s i o n Precision Precision,查全率 R e c a l l Recall Recall 和 F 1 − s c o r e F1-score F1−s…

linux 一些命令

文章目录 linux 一些命令fdisk 磁盘分区parted 分区文件系统mkfs 格式化文件系统fsck 修复文件系统 mount 挂载swap 交换分区清除linux缓存df du 命令raid 命令基本原理硬raid 和 软raid案例raid 10 故障修复,重启与卸载 lvm逻辑卷技术LVM的使用方式LVM 常见名词解析…

书生·浦语大模型-第一节课笔记

视频总结 23年发布的模型在一些材料中归位指令微调模型,后面逐渐升级应该已经是train的模型了 技术报告总结 InternLM2 Technical Report 评测与特点 6 dimensions and 30 benchmarks, long-context modeling, and open-ended subjective evaluations长文本…

与鲸同行,智领未来!和鲸科技“人工智能+X”学科建设合作交流会(北京站)圆满结束!

在国家加快发展新质生产力的大背景下,3月25日下午,和鲸科技 2024 年“人工智能X”学科建设合作交流会(北京站)暨“AIX”实验室建设与供应商选型座谈会顺利召开。为提供更为集中和专业的讨论环境,本次会议特别采取闭门审…

环境温度对测量平板有什么影响

环境温度可以对测量平板有影响。温度变化可以导致平板的尺寸发生变化。根据热膨胀原理,当环境温度升高时,平板的尺寸会扩大;当环境温度降低时,平板的尺寸会缩小。这种尺寸变化可能会导致测量结果的误差。因此,在测量平…

【蓝桥杯第十三届省赛B】(部分详解)

九进制转十进制 #include <iostream> #include<math.h> using namespace std; int main() {cout << 2*pow(9,3)0*pow(9,2)2*pow(9,1)2*pow(9,0) << endl;return 0; }顺子日期 #include <iostream> using namespace std; int main() {// 请在此…

一文了解JAVA的常用API

目录 常用kpimathSystemRuntimeObjectObjectsBigIntegerBigDecima正则表达式包装类 常用kpi 学习目的&#xff1a; 了解类名和类的作用养成查阅api文档的习惯 math 工具类。因为是工具类&#xff0c;因此直接通过类名.方法名(形参)即可直接调用 abs&#xff1a;获取参数绝对…

flume配置文件后不能跟注释!!

先总结&#xff1a;Flume配置文件后面&#xff0c;不能跟注释&#xff0c;可以单起一行写注释 报错代码&#xff1a; [ERROR - org.apache.flume.SinkRunner$PollingRunner.run(SinkRunner.java:158)] Unable to deliver event. Exception follows. org.apache.flume.EventDel…

内网穿透时报错【Bad Request This combination of host and port requires TLS.】的原因

目录 前言&#xff1a;介绍一下内网穿透 1.内网直接https访问&#xff08;可以正常访问&#xff09; 程序配置的证书 2.内网穿透后,通过外网访问 3.原因 4.内网非https的Web应用&#xff0c;使用https后&#xff0c;也变成了https访问 5.题外话 感觉自己的web应用配置了…

axios post请求参数传输表单数据,其中一个key的value需要json格式, (qs的使用知识扩充)

今天遇到了一个场景&#xff0c;post请求&#xff0c;请求体的content-type是application/x-www-form-urlencoded&#xff0c;然后我按照往常的情况直接设置完&#xff0c;接口参数进行qs.stringify操作。转成表单的格式传输给后端&#xff0c;但是在浏览器中查看接口参数发现是…

极危!XZ Utils 5.6.0/5.6.1版本恶意后门植入漏洞风险通告

前日&#xff0c;亚信安全CERT监控到安全社区发布安全通告&#xff0c;披露XZ Utils 5.6.0、5.6.1版本存在恶意后门植入漏洞&#xff08;CVE-2024-3094&#xff09;。开发人员在调查SSH性能问题时发现了涉及XZ Utils的供应链攻击。从 5.6.0 版开始&#xff0c;在 xz 的上游libl…

【小黑送书—第十八期】>>让工作自动化起来!无所不能的Python(文末送书)

随着我国企业数字化和信息化的深入&#xff0c;企业对办公自动化的效率和灵活性要求越来越高。Python作为一种开源的软件应用开发方式&#xff0c;通过提供强大丰富的库文件包&#xff0c;极大地简化了应用开发过程&#xff0c;降低了技术门槛。Python开发有哪些优势、挑战以及…