基于YOLOv8的绝缘子检测系统

  💡💡💡本文摘要:基于YOLOv8的绝缘子小目标检测,阐述了整个数据制作和训练可视化过程

1.YOLOv8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.绝缘子数据集介绍

  aircraft总共包含1631张图片,按照7:2:1划分了training val test

标签名  0: broken insulator  1: flashover damage

 

2.1 split_train_val.py

# coding:utf-8import os
import random
import argparseparser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()trainval_percent = 0.9
train_percent = 0.7
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):os.makedirs(txtsavepath)num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')for i in list_index:name = total_xml[i][:-4] + '\n'if i in trainval:file_trainval.write(name)if i in train:file_train.write(name)else:file_val.write(name)else:file_test.write(name)file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

2.2 voc_label.py生成适合YOLOv8训练的txt

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = ['train','val','test']
classes = ['broken insulator','flashover damage']def convert(size, box):dw = 1. / size[0]dh = 1. / size[1]x = (box[0] + box[1]) / 2.0y = (box[2] + box[3]) / 2.0w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)
def convert_annotation(image_id):in_file = open('Annotations/%s.xml' % (image_id))out_file = open('labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)
for image_set in sets:if not os.path.exists('labels/'):os.makedirs('labels/')image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()list_file = open('%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write('images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

3.如何训练YOLOv8

3.1 配置insulator.yaml

ps:建议填写绝对路径


path: F:/ultralytics-insulator/VOC2007 # dataset root dir
train: train.txt  # train images (relative to 'path') 118287 images
val: val.txt  # val images (relative to 'path') 5000 images# number of classes
nc: 2# class names
names:0: broken insulator1: flashover damage

3.2 如何训练

from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/yolov8.yaml')#model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data='data/insulator.yaml',cache=False,imgsz=640,epochs=200,batch=16,close_mosaic=10,workers=0,device='0',optimizer='SGD', # using SGDproject='runs/train',name='exp',)

3.3 训练可视化结果

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

预测结果: 

关注下方名片点击关注,即可源码获取途径。  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/294020.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

k8s入门到实战(七)—— 回顾:使用yaml文件配置pv、pvc、configmap部署mysql服务

实战:部署 mysql 服务 回顾加深 pv、pvc、configmap 删除所有 deployment、pv、pvc、configmap、StorageClass创建一个 nsf 挂载目录给 mysql mkdir -p /nfs/data/mysql创建 yaml 文件mysql-server.yaml # 创建pv apiVersion: v1 kind: PersistentVolume metadat…

针对 qt的sqlite加密数据库sqlitecipher插件QtCipherSqlitePlugin

💂 个人主页:pp不会算法^ v ^ 🤟 版权: 本文由【pp不会算法v】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦 文章目录 简介编译安装使用可视化工具查看完结 简介 在客户端存储…

字符指针、字符串、字符数组、字符串数组等

参考&#xff1a;https://xiefor100.blog.csdn.net/article/details/52667734 #include <stdio.h> #include <stdlib.h> #include <string.h> int main() {char s1[] "12345"; // "12345"在栈区&#xff0c;可以指针偏移读取和修改c…

stable diffusion如何下载预处理器?

如何下载预处理器&#xff1f; 具体位置:SD文件>extensions>sd-webui-controlnet>annotator” 把整个文件夹复制到SD的文件夹里面 里面有一个“downloads”文件夹 把这些模型复制到“downloads”文件夹里

【MATLAB第103期】#源码分享 | 基于MATLAB的LIME可解释性线性分类预测模型,2020b以上版本

【MATLAB第103期】#源码分享 | 基于MATLAB的LIME可解释性线性分类预测模型&#xff0c;2020b以上版本 一、模型介绍 LIME&#xff08;Local Interpretable Model-agnostic Explanations&#xff09;是一种用于解释复杂机器学习模型预测结果的算法。它由Marco Ribeiro、Sameer…

并发-开启新线程

目录 实现多线程的官方正确方法&#xff1a;2种 实现Runnable接口方式的实现原理 两种方法的对比 匿名内部类实现线程的两种方式 思考&#xff1a;同时用两种方法会怎么样 总结&#xff1a;最精准的描述 实现多线程的官方正确方法&#xff1a;2种 方法一&#xff1a;实现…

Git、TortoiseGit、SVN、TortoiseSVN 的关系和区别

Git、TortoiseGit、SVN、TortoiseSVN 的关系和区别 &#xff08;二&#xff09;Git&#xff08;分布式版本控制系统&#xff09;:&#xff08;二&#xff09;SVN&#xff08;集中式版本控制系统&#xff09;&#xff08;三&#xff09;TortoiseGit一、下载安装 git二、安装过程…

[Java基础揉碎]接口

目录 为什么有接口 基本介绍 接口的应用场景 注意事项和细节 接口和继承类的比较 总结 >接口和继承解决的问题不同 >接口比继承更加灵活 >接口在一定程度上实现代码解耦 接口的多态特性 多态参数 ​编辑 多态数组 多态传递 ​编辑 为什么有接口 usb插槽就是…

Educational Codeforces Round 163 (Rated for Div. 2) E. Clique Partition

题目 思路&#xff1a; #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back #define fi first #define se second #define lson p << 1 #define rson p << 1 | 1 const int maxn 1e6 5, inf 1e9, maxm 4e4 5; co…

halcon图像腐蚀

1、原理 使用结构元素在图像上移动&#xff0c;只有结构元素上的所有像素点都属于图像中时&#xff0c;才保留结构元素中心点所在的像素&#xff0c;常用于分离连接的两个物体、消除噪声。 2、halcon代码 dev_open_file_dialog (read_image, default, default, Selection) r…

【Java八股面试系列】Arraylist和HashMap的底层原理

文章目录 ArrayList源码总&#xff1a;构造方法扩容机制remove HashMap总&#xff1a;构造方法细节问题putVal()方法resize()方法Hash值 HashMap常见问题 ConcurrentHashMap总&#xff1a;putVal()方法自己的测试 为什么重写HashCode和equals ArrayList源码 总&#xff1a; *…

C++template之类模版进一步了解

目录 一、类模板实例化 1.非类型模版参数 2.函数模板的特化 3.类模板特化 3.1全特化 3.2偏特化 3.2.1部分特化 3.2.2对参数进一步限制 二、注意事项 1.类模板的定义和声明要在同一个文件&#xff0c;不然容易出错 前言&#xff1a;这一篇是在我的上一篇文章的基础上&am…

网络安全接入认证-802.1X接入说明

介绍 802.1X是一个网络访问控制协议&#xff0c;它可以通过认证和授权来控制网络访问。它的基本原理是在网络交换机和认证服务器之间建立一个安全的通道&#xff0c;并要求客户端提供身份验证凭据。如果客户端提供的凭据是有效的&#xff0c;交换机将开启端口并允许访问。否则&…

“转行做程序员”很难?这里有4个建议

近几年来&#xff0c;传统行业多处于经济下行&#xff0c;加上互联网行业的赚钱效应&#xff0c;想要转行到这一行的人越来越多&#xff0c;其中程序员这个行业更是很多人梦寐以求的。 但另一方面&#xff0c;我们也发现&#xff0c;这些想要转行的同学们往往会遇到很多困扰。…

使用Kaggle API快速下载Kaggle数据集

前言 在使用Kaggle网站下载数据集时&#xff0c;直接在网页上点击下载可能会很慢&#xff0c;甚至会出现下载失败的情况。本文将介绍如何使用Kaggle API快速下载数据集。 具体步骤 安装Kaggle API包 在终端中输入以下命令来安装Kaggle API相关的包&#xff1a; pip install…

linux bypy 定时备份到百度网盘

安装 # 先卸载安装的python-pip sudo yum remove python-pip# 下载get-pip.py文件 wget https://bootstrap.pypa.io/pip/2.7/get-pip.py sudo python get-pip.py直接访问这个地址下载文件,再导入linux更快! https://bootstrap.pypa.io/pip/2.7/get-pip.py 连接 复制上面的连…

Prometheus+grafana环境搭建mysql(docker+二进制两种方式安装)(三)

由于所有组件写一篇幅过长&#xff0c;所以每个组件分一篇方便查看&#xff0c;前两篇 Prometheusgrafana环境搭建方法及流程两种方式(docker和源码包)(一)-CSDN博客 Prometheusgrafana环境搭建rabbitmq(docker二进制两种方式安装)(二)-CSDN博客 1.监控mysql 1.1官方地址:…

Unity TrailRenderer的基本了解

在Unity中&#xff0c;TrailRenderer组件用于在对象移动时创建轨迹效果。通常用于增强游戏中的动态物体&#xff0c;比如子弹、飞行道具或者角色移动时的拖尾效果。 下面来了解下它的基本信息。 1、创建 法1&#xff1a;通过代码创建 using UnityEngine;public class Trail…

linux系统命令chkconfig详解,管理系统服务的工具-查看、启用、禁用和设置系统服务的启动级别

目录 一、chkconfig命令介绍 二、命令的主要作用 1、管理服务的启动和停止&#xff1a; 2、配置运行级别&#xff1a; 3、简化系统管理&#xff1a; 4、查看服务状态&#xff1a; 三、命令语法 1、基本语法 2、运行级别 四、获取帮助 1、通过help获取 2、通过man获…

Eclipse+Java+Swing实现斗地主游戏

一. 视频演示效果 java斗地主源码演示 ​ 二.项目结构 代码十分简洁&#xff0c;只有简单的7个类&#xff0c;实现了人机对战 素材为若干的gif图片 三.项目实现 启动类为Main类&#xff0c;继承之JFrame&#xff0c;JFrame 是 Java Swing 库中的一个类&#xff0c;用于创建窗…