稀疏矩阵的三元组表表示法及其转置

1. 什么是稀疏矩阵

稀疏矩阵是指矩阵中大多数元素为零的矩阵。

从直观上讲,当元素个数低于总元素的30%时,这样的矩阵被称为稀疏矩阵。

由于该种矩阵的特点,我们在存储这种矩阵时,如果直接采用二维数组,就会十分浪费空间,因为其中大多数元素都是重复的零。

稀疏矩阵的三元组表表示法

对于稀疏矩阵的压缩存储,采用只存储非零元素的方法。

由于稀疏矩阵中非零元素a_{ij}的分布没有规律,因此在存储非零元素值得同时,还必须存储该非零元素在矩阵中的位置信息,即行号和列号。

也就是采用三元组的结构存储:

为处理方便,将稀疏矩阵中非零元素对应的三元组行号依次增大进行存放。

这也就解释了,为什么稀疏矩阵是非零元素占比小于30%的矩阵。

因为采取三元组的结构储存,一个元素会占用三个单元的空间,只有当零元素占比小于30%时,这种存储结构才能在空间上有较明显的收益。

稀疏矩阵三元组表的类型定义

#define ElementType int//一个三元组元素
typedef struct 
{int row, col;//非零元素行下标和列下标ElementType e;
}Triple;//稀疏矩阵
typedef struct 
{Triple* data;//非零元素的三元组表int m, n, len;//矩阵行数,列数,非零元素个数int capacity;//容量
}TSMatrix;

 2. 对稀疏矩阵进行基本操作

//初始化稀疏矩阵
void TSMInite(TSMatrix* ps)
{assert(ps);ps->data = NULL;ps->m = TSM_ROWMAX;ps->n = TSM_COLMAX;ps->len = 0;ps->capacity = 0;
}//销毁稀疏矩阵
void TSMDestroy(TSMatrix* ps)
{assert(ps);free(ps->data);ps->data = NULL;ps->len = 0;ps->capacity = 0;
}//检查扩容
void CheckCapacity(TSMatrix* ps)
{assert(ps);if(ps->capacity == ps->len){int newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;Triple* tmp = (Triple*)realloc(ps->data, newcapacity * sizeof(Triple));if(tmp == NULL){perror("realloc");exit(-1);}ps->data = tmp;ps->capacity = newcapacity;}
}//插入元素
void ElemInsert(TSMatrix* ps, Triple x)
{assert(ps);CheckCapacity(ps);if(ps->len == 0){ps->data[ps->len] = x;}if(x.row < ps->data[0].row){for(int j = ps->len; j > 0; j--){ps->data[j] = ps->data[j - 1];}ps->data[0] = x;}elsefor(int i = 0; i < ps->len; i++){if(x.row >= ps->data[i].row&&x.row <= ps->data[i + 1].row||i == ps->len - 1){for(int j = ps->len; j > i + 1; j--){ps->data[j] = ps->data[j - 1];}ps->data[i + 1] = x;break;}}ps->len++;
}//打印元素
void TSMPrint(TSMatrix ps)
{for(int i = 0; i < ps.len; i++){printf("row = %d col = %d e = %d\n", ps.data[i].row, ps.data[i].col, ps.data[i].e);}printf("\n");
}

这些函数基本是以顺序表操作函数为蓝本写的,目的是为了方便我们实现稀疏矩阵的转置。

只不过插入元素的函数需要确保插入之后,三元组的行号是依次递增的。

3. 稀疏矩阵的转置

需要强调的是,矩阵的常规存储是二维的,而三元组表存储是一维的,由于矩阵存储结构的变化,也带来了运算方法的不同,必须认真分析。

3.1 稀疏矩阵转置的经典算法

void TransMatrix(ElementType source[m][n], ElementType dest[n][m])
{int i, j;for(i = 0; i < m; i++)for(j = 0; j < n; j++)dest[j][i] = source[i][j];
}

这个算法是针对传统的二维数组的存储方式。

3.2 用三元组表实现稀疏矩阵的转置

假设A和B是稀疏矩阵source和dest的三元组表,则实现转置的简单方法如下:

1. 三元组表A的行,列互换就可以得到B中的元素。

2. 转置后的矩阵的三元组表B中的三元组不是以“行序为主序”存储的,为保证三元组表B也是以“行序为主序”进行存放的,则需要对该三元组表B按行下标(即A的列下标)以递增顺序重新排列。

 上图中的步骤很容易实现,但是重新排序势必会大量移动元素,从而影响算法的效率。

为避免上述简单转置算法中重新排序引起的元素移动,可采取接下来的两种处理方法。

3.2.1 列序递增转置法

算法思想

这里的列序指的是A的列,也就是按照A的列序来将元素转置到B中。

即将A的第一列全部转置到B中(得到B的第一行)后,再将A的第二列全部转置到B中,以此类推。

代码

//列序递增转置法
void TSMSwitch1(TSMatrix A, TSMatrix* B)
{assert(B);TSMDestroy(B);B->data = (Triple*)malloc(A.capacity * sizeof(Triple));B->capacity = A.capacity;B->len = A.len;B->m = A.n;B->n = A.m;int j = 0;//记录B当前空位for(int k = 0; k < A.n; k++){for(int i = 0; i < A.len; i++){if(A.data[i].col == k){B->data[j].row = A.data[i].col;B->data[j].col = A.data[i].row;B->data[j].e = A.data[i].e;j++;}}}
}

分析

这种算法确实使得我们不用再单独进行排序,但是双重循环依然造成了较高的时间复杂度(O(A.n * A.len))。

那么我们能否降低该算法的时间复杂度呢?

如果能,那么我们的着手点一定是想办法优化掉二重循环。

可以发现,该算法中二重循环出现的原因在于,必须将A的第一列全部转置之后才能转置第二列,每列转置需要重新扫描一次A。

那么,我们有没有办法使得各列同时进行存放呢,这样就只用扫描一次A了。

3.2.2 一次定位快速转置法

算法思想

如果我们知道A的每一列有多少个元素,那么就可以推知B中每一行的起始位置。

这样一来,假如某次在A中扫描到第n列的元素,我们就可以直接将其放到B中的第n行所在位置,而不用先放完一列再放下一列。

所以,我们准备进行三次循环:

1. 定义数组num,数组的下标表示A的列,遍历A并将每一列元素的个数记录在num中。

2. 定义数组position,数组下标表示B的行,遍历position,根据A每一列元素的个数得到对应行的起始位置。

3. 遍历A,根据position数组,将A中的元素转置到B的对应行。

代码 

//一次定位快速转置算法
void TSMSwitch2(TSMatrix A, TSMatrix* B)
{assert(B);TSMDestroy(B);B->data = (Triple*)malloc(A.capacity * sizeof(Triple));B->capacity = A.capacity;B->len = A.len;B->m = A.n;B->n = A.m;int num[B->m];int position[B->m];memset(num, 0, B->m * sizeof(int));memset(num, 0, B->m * sizeof(int));for(int i = 0; i < A.len; i++){num[A.data[i].col]++;}position[0] = 0;for(int row = 1; row < B->m; row++){position[row] = position[row - 1] + num[row - 1];}for(int i = 0; i < A.len; i++){B->data[position[A.data[i].col]].row = A.data[i].col;B->data[position[A.data[i].col]].col = A.data[i].row;B->data[position[A.data[i].col]].e = A.data[i].e;position[A.data[i].col]++;}
}

算法分析

显然,一次定位快速转置算法的时间效率要高得多,它在时间性能上由于列序递增转置法,但在空间耗费上增加了两个辅助向量空间,即num和position。

由此可见,算法在时间上的节省是以更多的储存空间为代价的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/296917.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构—树

树概述 树类似于现实生活中倒置的树。任何一颗非空树只有一个根节点。一棵树具有以下特点&#xff1a; 一棵树中的任意两个结点有且仅有唯一的一条路径连通。一棵树如果有 n 个结点&#xff0c;那么它一定恰好有 n-1 条边。一棵树不包含回路。 下图就是一颗树&#xff0c;并…

ALPHA开发板上的PHY芯片驱动:LAN8720驱动

一. 简介 前面文章了解到&#xff0c;Linux内核是有提供 PHY通用驱动的。 本文来简单了解一下ALPHA开发板上的 PHY网络芯片LAN8720的驱动。是 LAN8720芯片的公司提供的 PHY驱动。 二. ALPHA开发板上的PHY芯片驱动&#xff1a;LAN8720驱动 我 们 来 看 一 下 LAN8720A 的 …

大模型量化技术-GPTQ

大模型量化技术-GPTQ 2022年,Frantar等人发表了论文 GPTQ:Accurate Post-Training Quantization for Generative Pre-trained Transformers。 这篇论文详细介绍了一种训练后量化算法,适用于所有通用的预训练 Transformer模型,同时只有微小的性能下降。 GPTQ算法需要通过…

【随笔】Git 基础篇 -- 分支与合并 git rebase(十)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…

Linux提权!!!

上一篇文章讲了Windows的提权&#xff0c;那么这篇文章就来讲一下Linux的提权 1.SUID提权 suid权限 作用&#xff1a;让普通用户临时拥有该文件的属主的执行权限&#xff0c;suid权限只能应用在二进制可执行文件&#xff08;命令&#xff09;上&#xff0c;而且suid权限只能设置…

Vue依赖注入,详细解析

Prop 逐级透传问题​ 通常情况下&#xff0c;当我们需要从父组件向子组件传递数据时&#xff0c;会使用 props。想象一下这样的结构&#xff1a;有一些多层级嵌套的组件&#xff0c;形成了一颗巨大的组件树&#xff0c;而某个深层的子组件需要一个较远的祖先组件中的部分数据。…

优先队列c++

内容&#xff1a; priority_quene是一个优先队列&#xff0c;优先级别高的先入队&#xff0c;默认最大值优先 因此出队和入队的时间复杂度均为O&#xff08;logn&#xff09;,也可以自定义优先级 头文件<quene> 函数&#xff1a; 构建优先队列 priority_queue<in…

Pycharm+Neo4j红楼梦人物关系图谱

欢迎来到我的主页~【蜡笔小新..】 本篇收录于专栏【Python】 如果对你有帮助&#xff0c;希望点赞收藏加关注啦~ 目录 前言 neo4j基础知识 Pycharm及代码实现 py2neo 数据集获取 代码介绍 前言 Python实验课时&#xff0c;老师提到用知识图谱构建红楼梦的人物关系图&…

Vue.js基础指令

(在讲指令之前,可以先了解插值表达式,如果已经知道,当我没说) 一.插值表达式 1.数据绑定最常见的形式就是双大括号的文本插值,Mustache上属性的值替代。只要绑定的数据对象上属性发生了改变,插值处的内容都会更新。,message 是将数据解析成纯文本的,也就是说,就算中…

Linux之进程间通信

1.进程间通信的目的 数据传输&#xff1a;一个进程需要将它的数据发送给另一个进程 资源共享&#xff1a;多个进程之间共享同样的资源。 通知事件&#xff1a;一个进程需要向另一个或一组进程发送消息&#xff0c;通知它&#xff08;它们&#xff09;发生了某种事件&#xff…

FressRTOS_day4:2024/4/4

1.总结二进制信号量和计数型信号量的区别&#xff0c;以及他们的使用场景。 二进制信号量的数值只有0和1。&#xff08;用于共享资源的访问&#xff09;&#xff1b;而计数型信号量的值一般是大于或者等于2&#xff08;用于生产者和消费者模型&#xff09; 2.使用计数型信号量…

【linux】进程替换的应用|shell解释器的实现

当我们学过了进程替换之后&#xff0c;本篇文章可以根据进程替换的知识带你自主实现一个shell命令行 实现步骤 1.显示命令行提示 2.读取输入指令以及对应选项 3.分割第二步的指令以及选项到命令行参数表中 4.处理内建命令 5.进程替换 1.显示命令行提示 我们通过观察bash的命令行…

计算机网络:局域网的数据链路层

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…

Java基础 - 代码练习

第一题&#xff1a;集合的运用&#xff08;幸存者&#xff09; public class demo1 {public static void main(String[] args) {ArrayList<Integer> array new ArrayList<>(); //一百个囚犯存放在array集合中Random r new Random();for (int i 0; i < 100; …

红黑树的性质与操作:吸收红结点及其对树结构的影响

红黑树的性质与操作&#xff1a;吸收红结点及其对树结构的影响 1.红黑树的基本性质2.吸收红结点的过程2.1黑色结点的度2.2 叶结点深度 3.伪代码实现4. C语言代码实现5. 结论 红黑树作为一种高效的自平衡二叉搜索树&#xff0c;在计算机科学中扮演着重要的角色。它通过一系列复杂…

开源软件技术社区方案

开源软件技术社区是一个由开发者、贡献者、用户和维护者组成的共享平台&#xff0c;主要目的是打造技术、软件产品良性互动、开源技术安全可控的软件生态环境&#xff0c;实现可复用应用或服务的快速部署与使用、完成资源与能力的高度共享、促进社区成员的共建共赢&#xff0c;…

电池二次利用走向可持续大循环周期的潜力和挑战(第一篇)

一、背景 当前&#xff0c;气候变化是全球可持续发展面临的重大挑战。缓解气候变化最具挑战性的目标是在本世纪中期实现碳中和&#xff08;排放量低到足以被自然系统安全吸收&#xff09;&#xff0c;其中电动汽车&#xff08;EV&#xff09;的引入是一项关键举措。电动汽车在…

CSS3新增的语法(三)【2D,3D,过渡,动画】

CSS3新增的语法&#xff08;三&#xff09;【2D,3D,过渡&#xff0c;动画】 10.2D变换10.1. 2D位移10.2. 2D缩放10.3. 2D旋转10.4. 2D扭曲&#xff08;了解&#xff09;10.5. 多重变换10.6. 变换原点 11. 3D变换11.1. 开启3D空间11.2. 设置景深11.3. 透视点位置11.4. 3D 位移11…

为 AI 而生的编程语言「GitHub 热点速览」

Mojo 是一种面向 AI 开发者的新型编程语言。它致力于将 Python 的简洁语法和 C 语言的高性能相结合&#xff0c;以填补研究和生产应用之间的差距。Mojo 自去年 5 月发布后&#xff0c;终于又有动作了。最近&#xff0c;Mojo 的标准库核心模块已在 GitHub 上开源&#xff0c;采用…

【Spring】使用@Bean和@Import注解配置Bean,与Bean的实例化

目录 1、bean是什么 2、配置bean 2.1、使用Bean注解配置Bean 2.2、使用Import注解配置Bean 3、实例化Bean 1、bean是什么 在 Spring 中&#xff0c;Bean 是指由 Spring 容器管理的对象。Spring IOC 容器负责创建、配置和管理这些 Bean 对象的生命周期。Spring IOC 容器会管…