深度学习PyTorch之13种模型精度评估公式及调用方法

深度学习pytorch之22种损失函数数学公式和代码定义
深度学习pytorch之19种优化算法(optimizer)解析
深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用
深度学习pytorch之简单方法自定义9类卷积即插即用
实时语义分割之BiSeNetv2(2020)结构原理解析及建筑物提取实践

文章目录

  • 摘要
    • 1. Accuracy Score
    • 2. Balanced Accuracy
    • 3. Brier Score Loss
    • 4. Cohen's Kappa
    • 5. F1/F-beta Score
    • 6. Hamming Loss
    • 7. Hinge Loss
    • 8. Jaccard Score
    • 9. Log Loss
    • 10. Matthews Correlation
    • 11. Precision
    • 12. Recall
    • 13. Zero-One Loss
  • 关键参数说明
  • 可执行代码示例

摘要

模型训练后需要评估模型性能,因此需要了解各种评估指标的具体用法和背后的数学原理,本博客以清晰的格式呈现分类任务评估指标的名称、调用示例、公式说明。

1. Accuracy Score

调用方式:

from sklearn.metrics import accuracy_score
acc = accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)

公式:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

2. Balanced Accuracy

调用方式:

from sklearn.metrics import balanced_accuracy_score
bal_acc = balanced_accuracy_score(y_true, y_pred, sample_weight=None, adjusted=False)

公式:

Balanced Accuracy = (Recall_Class1 + Recall_Class2 + … +Recall_ClassN) / N
调整后版本:BalancedAcc_adj = (BalancedAcc - 1/N) / (1 -1/N)

3. Brier Score Loss

调用方式:

from sklearn.metrics import brier_score_loss
brier = brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=1)

公式:

Brier Score = 1/N * Σ(y_true_i - y_prob_i)^2

(适用于概率预测的校准度评估)

4. Cohen’s Kappa

调用方式:

from sklearn.metrics import cohen_kappa_score
kappa = cohen_kappa_score(y1, y2, labels=None, weights=None, sample_weight=None)

公式:

κ = (p_o - p_e) / (1 - p_e) 其中 p_o 为观察一致率,p_e 为期望一致率

5. F1/F-beta Score

调用方式:

from sklearn.metrics import f1_score, fbeta_score
f1 = f1_score(y_true, y_pred, average='weighted', zero_division=0)
fbeta = fbeta_score(y_true, y_pred, beta=0.5, average='macro')

公式:

Fβ = (1 + β²) * (precision * recall) / (β² * precision + recall) 当 β=1
时为 F1 Score

6. Hamming Loss

调用方式:

from sklearn.metrics import hamming_loss
hamming = hamming_loss(y_true, y_pred, sample_weight=None)

公式:

Hamming Loss = 1/N * Σ(预测错误的标签数 / 总标签数) (多标签任务专用)

7. Hinge Loss

调用方式:

from sklearn.metrics import hinge_loss
hinge = hinge_loss(y_true, pred_decision, labels=None, sample_weight=None)

公式:

Hinge Loss = max(0, 1 - y_true * pred_decision) 的平均值 (SVM模型常用)

8. Jaccard Score

调用方式:

from sklearn.metrics import jaccard_score
jaccard = jaccard_score(y_true, y_pred, average='samples')

公式:

Jaccard = TP / (TP + FP + FN)

即IOU,多用于图像分割评估

9. Log Loss

调用方式:

from sklearn.metrics import log_loss
logloss = log_loss(y_true, y_pred, eps=1e-15, normalize=True, labels=None)

公式:

Log Loss = -1/N * Σ[y_true_i * log(y_pred_i) + (1-y_true_i) *log(1-y_pred_i)]

交叉熵损失,需概率预测输入

10. Matthews Correlation

调用方式:

from sklearn.metrics import matthews_corrcoef
mcc = matthews_corrcoef(y_true, y_pred, sample_weight=None)

公式:

MCC = (TPTN - FPFN) / √((TP+FP)(TP+FN)(TN+FP)(TN+FN))

适用于类别不平衡的二分类

11. Precision

调用方式:

from sklearn.metrics import precision_score
precision = precision_score(y_true, y_pred, average='weighted', zero_division=0)

公式:

Precision = TP / (TP + FP)

12. Recall

调用方式:

from sklearn.metrics import recall_score
recall = recall_score(y_true, y_pred, average='macro', zero_division=0)

公式:

Recall = TP / (TP + FN)

13. Zero-One Loss

调用方式:

from sklearn.metrics import zero_one_loss
zero_one = zero_one_loss(y_true, y_pred, normalize=True)

公式:

Zero-One Loss = 1 - Accuracy

直接统计错误预测比例

关键参数说明

参数说明
average计算方式:None(各类单独计算)、‘micro’(全局统计)、‘macro’(各类平均)、‘weighted’(按支持数加权)
zero_division处理除零情况:0(返回0)、1(返回1)或’warn’(返回0并警告)
sample_weight样本权重数组
pos_label指定正类标签(仅二分类有效)
labels指定要评估的类别列表
betaF-beta中召回率的权重(>1侧重召回率,<1侧重精确率)

可执行代码示例

以下程序采用常用的accuracy, precision, recall, f1对分类结果进行评估,注意替换下列文件夹,两个文件夹内均为8位单波段影像,采用相同命名。

  • label_dir = ‘label’ # 替换为实际路径
  • pred_dir = ‘pred’ # 替换为实际路径
import os
import numpy as np
from PIL import Image
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
import matplotlib.pyplot as pltdef load_images_and_labels(label_dir, pred_dir):"""读取标签图像和预测图像,假设它们的像素值代表类别标签。:param label_dir: 实际标签图像的文件夹路径:param pred_dir: 预测标签图像的文件夹路径:return: 实际标签和预测标签的列表"""labels = []preds = []# 获取文件列表label_files = sorted(os.listdir(label_dir))pred_files = sorted(os.listdir(pred_dir))# 遍历每个图像文件加载标签和预测for label_file, pred_file in zip(label_files, pred_files):label_path = os.path.join(label_dir, label_file)pred_path = os.path.join(pred_dir, pred_file)# 加载图像并转换为灰度label_img = Image.open(label_path).convert('L')  # 灰度图pred_img = Image.open(pred_path).convert('L')  # 灰度图# 假设灰度值代表类标签label = np.array(label_img)pred = np.array(pred_img)# 扁平化数组,以便计算评估指标labels.extend(label.flatten())preds.extend(pred.flatten())return np.array(labels), np.array(preds)def evaluate_model(labels, preds):"""计算模型的评估指标:param labels: 实际标签:param preds: 预测标签"""# 计算评估指标accuracy = accuracy_score(labels, preds)precision = precision_score(labels, preds, average='weighted', zero_division=0)recall = recall_score(labels, preds, average='weighted', zero_division=0)f1 = f1_score(labels, preds, average='weighted', zero_division=0)# 打印评估指标print(f"Accuracy: {accuracy:.4f}")print(f"Precision: {precision:.4f}")print(f"Recall: {recall:.4f}")print(f"F1 Score: {f1:.4f}")# 可选:绘制混淆矩阵from sklearn.metrics import confusion_matriximport seaborn as snscm = confusion_matrix(labels, preds)sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=np.unique(labels), yticklabels=np.unique(labels))plt.title('Confusion Matrix')plt.xlabel('Predicted')plt.ylabel('True')plt.show()if __name__ == "__main__":# 设置实际标签和预测标签的文件夹路径label_dir = 'label'  # 替换为实际路径pred_dir = 'pred'  # 替换为实际路径# 加载标签和预测数据labels, preds = load_images_and_labels(label_dir, pred_dir)# 评估模型evaluate_model(labels, preds)

输出结果:
Accuracy: 0.9681
Precision: 0.9686
Recall: 0.9681
F1 Score: 0.9683

绘制混淆矩阵:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/29755.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

显示器长时间黑屏

现象 电脑启动后,进入登录界面前会随机黑屏,有时候十几秒,有时候几分钟 进入桌面后,长时间不操作电脑黑屏,移动鼠标,点击键盘后尝试点亮屏幕,也会消耗较长时间 尝试 重装系统,或者重新安装显卡,都能够恢复,但过段时间以后又出现黑屏情况 集成显卡,独立显卡都出现过 操作系统…

网络编程之应用层协议(http)

HTTP: 1.url(统一资源定位符) 2.http:浏览器与服务器之间的通信标准 端口号&#xff1a;80&#xff1b; 传输层协议&#xff1a;TCP; 3.http工作流程&#xff1a; 4.http的报文格式&#xff1a; 5.HTTP请求报文的方法 6.回应报文&#xff1a;状态码 注意&#xff1a;

数据结构——顺序表与链表

1. 基础介绍 1、线性结构&#xff1a; 如果一个数据元素序列满足&#xff1a; &#xff08;1&#xff09;除第一个和最后一个数据元素外&#xff0c;每个数据元素只有一个前驱数据元素和一个后继数据元素&#xff1b; &#xff08;2&#xff09;第一个数据元素没有前驱数据…

苦瓜书盘官网,免费pdf/mobi电子书下载网站

苦瓜书盘&#xff08;kgbook&#xff09;是一个专注于提供6英寸PDF和MOBI格式电子书的免费下载平台&#xff0c;专为电子阅读器用户设计。该平台为用户提供了丰富的电子书资源&#xff0c;涵盖文学、历史、科学、技术等多个领域&#xff0c;旨在打造一个全面的电子书资源库。用…

PPT 小黑第20套

对应大猫21 Word转PPT 图片也得复制 题目要求两套PPT母板&#xff0c;应用不同版式&#xff08;版式那就可以选&#xff09; 竖排文字

第六课:数据库集成:MongoDB与Mongoose技术应用

本文详细介绍了如何在Node.js应用程序中集成MongoDB数据库&#xff0c;并使用Mongoose库进行数据操作。我们将涵盖MongoDB在Ubuntu 20系统中的安装、Bash命令的CRUD操作、Mongoose数据建模&#xff08;Schema/Model&#xff09;、关联查询与聚合管道&#xff0c;以及实战案例—…

蓝桥云客 卡牌

2.卡牌 - 蓝桥云课 卡牌 问题描述 这天&#xff0c;小明在整理他的卡牌。 他一共有n种卡牌&#xff0c;第i种卡牌上印有正整数i(i∈[1,n])&#xff0c;且第i种卡牌现有a_i张。 而如果有n张卡牌&#xff0c;其中每种卡牌各一张&#xff0c;那么这n张卡牌可以被称为一套牌。小…

【Linux】——初识操作系统

文章目录 冯-诺依曼体系结构操作系统shell 冯-诺依曼体系结构 我们现在所使用的计算机就是冯-诺依曼体系结构。 存储器就是内存。 由下图可知&#xff0c;寄存器最快&#xff0c;为啥不用寄存器呢&#xff1f; 因为越快价格就最贵&#xff0c;冯诺依曼体系结构的诞生&#xf…

坐标变换介绍与机器人九点标定的原理

【备注】本文的C#代码在下面链接中可以下载:Opencv的C#九点标定代码资源-CSDN文库 https://download.csdn.net/download/qq_34047402/90452336 一、坐标变换的介绍 1.绕原点旋转的坐标变换 一个点(x,y)绕原点旋转u度,其旋转后的坐标(x1,y1)如何计算? 2.绕任意点的坐标变…

恶劣天候三维目标检测论文列表整理

恶劣天候三维目标检测论文列表 图摘自Kradar &#x1f3e0; 介绍 Hi&#xff0c;这是有关恶劣天气下三维目标检测的论文列表。主要是来源于近3年研究过程中认为有意义的文章。希望能为新入门的研究者提供一些帮助。 可能比较简陋&#xff0c;存在一定的遗漏&#xff0c;欢迎…

掌握Kubernetes Network Policy,构建安全的容器网络

在 Kubernetes 集群中&#xff0c;默认情况下&#xff0c;所有 Pod 之间都是可以相互通信的&#xff0c;这在某些场景下可能会带来安全隐患。为了实现更精细的网络访问控制&#xff0c;Kubernetes 提供了 Network Policy 机制。Network Policy 允许我们定义一组规则&#xff0c…

Mybatis集合嵌套查询,三级嵌套

三个表&#xff1a;房间 玩家 玩家信息 知识点&#xff1a;Mybatis中级联有关联&#xff08;association&#xff09;、集合&#xff08;collection&#xff09;、鉴别器&#xff08;discriminator&#xff09;三种。其中&#xff0c;association对应一对一关系、collectio…

字典树(trie树)详解

【本文概要】本文主要介绍了字典树的概念&#xff0c;字典树的一般算法&#xff0c;包括初始化&#xff0c;插入&#xff0c;查找等&#xff0c;最后举了比较典型的案例以及算法比赛中常见的“01树”来辅助理解字典树这种特殊的数据结构。 1、什么是字典树 字典树&#xff0c;是…

【html期末作业网页设计】

html期末作业网页设计 作者有话说项目功能介绍 网站结构完整代码网站样图 作者有话说 目前&#xff0c;我们的项目已经搭建了各页面的基本框架&#xff0c;但内容填充还不完善&#xff0c;各页面之间的跳转逻辑也还需要进一步优化。 我们深知&#xff0c;一个好的项目需要不断…

数据安全VS创作自由:ChatGPT与国产AI工具隐私管理对比——论文党程序员必看的避坑指南

文章目录 数据安全VS创作自由&#xff1a;ChatGPT与国产AI工具隐私管理对比——论文党程序员必看的避坑指南ChatGPTKimi腾讯元宝DeepSeek 数据安全VS创作自由&#xff1a;ChatGPT与国产AI工具隐私管理对比——论文党程序员必看的避坑指南 产品隐私设置操作路径隐私协议ChatGPT…

C语言实现贪吃蛇

贪吃蛇小游戏的实现 讲解1.Win32 API介绍1.1控制台程序(system())1.2控制台屏幕上的坐标CDDRD1.3 GetStdHandle1.4 GetConsoleCursorInfo1.5 SetConsoleCursorInfo1.6 SetConsoleCursorPostion1.7 GetAsyncKeyState 2.游戏设计2.1地图2.2蛇身和食物2.3数据结构设计2.4游戏流程设…

游戏引擎学习第142天

今天的计划 欢迎来到这个游戏开发项目&#xff0c;我们将从零开始编写一个完整的游戏&#xff0c;并且不会使用任何现成的库或引擎。整个开发过程中涉及的所有代码都会被完整展示&#xff0c;包括游戏运行所需的每一个细节。无论是哪款游戏&#xff0c;最终都需要有人编写底层…

Manus全球首个通用Agent,Manus AI:Agent应用的ChatGPT时刻

文章目录 前言Manus AI: 全球首个通用AgentManus AI: 技术架构与创始人经历AI Agent的实现框架与启示AI Agent的发展预测行业风险提示 前言 这是一篇关于Manus AI及其在通用人工智能领域的应用和前景的报告&#xff0c;主要介绍了Manus AI的产品定位、功能、技术架构、创始人经…

FPGA学习篇——Verilog学习3(关键字+注释方法+程序基本框架)

1 Verilog常用关键字 大概知道以下哪些是关键字就好&#xff0c;如何使用还是得在编写代码中来学习。 2 Verilog注释方法 Verilog有两种注释方式&#xff1a; 2.1 “ // ” 单行。 2.2 “ /* ... */ ” 可扩展多行。 3 Verilog程序基本框架 Verilog 的基本设计单元是“…

一文对比RAGFLOW和Open WebUI【使用场景参考】

一、RAGFLOW与Open WebUI RAGFLOW是一款基于深度文档理解构建的开源 RAG&#xff08;Retrieval-Augmented Generation&#xff09;引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程&#xff0c;结合大语言模型&#xff08;LLM&#xff09;针对用户各类不…