Android Native 之 文件系统挂载

一、文件系统挂载流程概述

二、文件系统挂载流程细节

1、Init启动阶段

众所周知,init进程为android系统的第一个进程,也是native世界的开端,要想让整个android世界能够稳定的运行,文件系统的创建和初始化是必不可少的,这个过程需要在android世界的前面。

//aosp/system/core/init/first_stage_init.cpp
int FirstStageMain(int argc, char** argv) {LOG(INFO) << "init first stage started!";//.....bool created_devices = false;if (want_console == FirstStageConsoleParam::CONSOLE_ON_FAILURE) {if (!IsRecoveryMode()) {//第一步:创建设备created_devices = DoCreateDevices();if (!created_devices) {LOG(ERROR) << "Failed to create device nodes early";}}StartConsole(cmdline);}//......//第二步:挂载设备if (!DoFirstStageMount(!created_devices)) {LOG(FATAL) << "Failed to mount required partitions early ...";}//.....
}
//aosp/system/core/init/first_stage_mount.cpp
// Public functions公共函数
// Creates devices and logical partitions from storage devices
bool DoCreateDevices() {auto fsm = FirstStageMount::Create();if (!fsm.ok()) {LOG(ERROR) << "Failed to create FirstStageMount: " << fsm.error();return false;}//来创建设备/即初始化磁盘逻辑分区return (*fsm)->DoCreateDevices();
}
// Mounts partitions specified by fstab in device tree.
bool DoFirstStageMount(bool create_devices) {// Skips first stage mount if we're in recovery mode.if (IsRecoveryMode()) {LOG(INFO) << "First stage mount skipped (recovery mode)";return true;}auto fsm = FirstStageMount::Create();if (!fsm.ok()) {LOG(ERROR) << "Failed to create FirstStageMount " << fsm.error();return false;}if (create_devices) {if (!(*fsm)->DoCreateDevices()) return false;}//来进行文件系统的挂载return (*fsm)->DoFirstStageMount();
}
//void SetInitAvbVersionInRecovery() 第三个public函数,看起来是和recovery有关系的

Init进程的通过FirstStageMount::Create()来拿到一个fsm对象,然后依次调用fsm的DoCreateDevices和DoFirstStageMount来初始化挂载文件系统。

1.1 FirstStageMount::Create读取fstab配置表

此步骤主要是读取fstab分区配置表,具体实现逻辑其实移交给了fs_mgr

//aosp/system/core/init/first_stage_mount.cpp
using android::fs_mgr::ReadDefaultFstab;
using android::fs_mgr::ReadFstabFromDt;
Result<std::unique_ptr<FirstStageMount>> FirstStageMount::Create() {//读取fstab配置表,此表配置了各个目录支持的文件系统相关配置auto fstab = ReadFirstStageFstab();if (!fstab.ok()) {return fstab.error();}return std::make_unique<FirstStageMountVBootV2>(std::move(*fstab));
}
static Result<Fstab> ReadFirstStageFstab() {Fstab fstab;//从DT里面获取,DT好像跟内核有关系,没有具体研究if (!ReadFstabFromDt(&fstab)) {//读取默认的fstab配置表if (ReadDefaultFstab(&fstab)) {fstab.erase(std::remove_if(fstab.begin(), fstab.end(),[](const auto& entry) { return !entry.fs_mgr_flags.first_stage_mount; }),fstab.end());} else {return Error() << "failed to read default fstab for first stage mount";}}return fstab;
}

fs_mgr被编译成为静态库lib_fs_mgr,这部分逻辑其实就是读取fstab.ini配置文件并进行解析:

//aosp/system/core/fs_mgr/fs_mgr_fstab.cpp
// Loads the fstab file and combines with fstab entries passed in from device tree.
bool ReadDefaultFstab(Fstab* fstab) {fstab->clear();ReadFstabFromDt(fstab, false /* verbose */);std::string default_fstab_path;// Use different fstab paths for normal boot and recovery boot, respectivelyif ((access("/sbin/recovery", F_OK) == 0) || (access("/system/bin/recovery", F_OK) == 0)) {//recovery模式下读取/etc/recovery.fstabdefault_fstab_path = "/etc/recovery.fstab";} else { //正常模式下读取类似于/odm/etc/fstab.default_fstab_path = GetFstabPath();}Fstab default_fstab;if (!default_fstab_path.empty() && ReadFstabFromFile(default_fstab_path, &default_fstab)) {for (auto&& entry : default_fstab) {fstab->emplace_back(std::move(entry));}} else {LINFO << __FUNCTION__ << "(): failed to find device default fstab";}return !fstab->empty();
}
// Return the path to the fstab file.  There may be multiple fstab files; the
// one that is returned will be the first that exists of fstab.<fstab_suffix>,
// fstab.<hardware>, and fstab.<hardware.platform>.  The fstab is searched for
// in /odm/etc/ and /vendor/etc/, as well as in the locations where it may be in
// the first stage ramdisk during early boot.  Previously, the first stage
// ramdisk's copy of the fstab had to be located in the root directory, but now
// the system/etc directory is supported too and is the preferred location.
std::string GetFstabPath() {for (const char* prop : {"fstab_suffix", "hardware", "hardware.platform"}) {std::string suffix;if (!fs_mgr_get_boot_config(prop, &suffix)) continue;for (const char* prefix : {// late-boot/post-boot locations"/odm/etc/fstab.", "/vendor/etc/fstab.",// early boot locations"/system/etc/fstab.", "/first_stage_ramdisk/system/etc/fstab.","/fstab.", "/first_stage_ramdisk/fstab."}) {std::string fstab_path = prefix + suffix;if (access(fstab_path.c_str(), F_OK) == 0) {return fstab_path;}}}return "";
}

如下Android 14的手机的开机日志,在init阶段来读取fstab配置表的打印:这里的dt没有配置fstab,默认路径没有任何打印,但是可以了解到libfs_mgr的入口

1.2 fstab文件是什么样子的?

 android系统的文件系统相关参数定义被统一放在fstab.in里面,从上面的流程可以了解到fs_mgr会去读取fstab.*文件,并根据此文件配置的内容去逐一挂载所有的分区,那么它到底长什么样子的呢?

首先cat /vendor/etc/fstab.mtxxxx内容如下:

D50:/vendor/etc # cat fsta
fstab.enableswap  fstab.mt6765      fstab.mt8768
D50:/vendor/etc # cat fstab.mt6765
# 1 "vendor/mediatek/proprietary/hardware/fstab/mt6765/fstab.in.mt6765"
# 1 "<built-in>" 1
# 1 "<built-in>" 3
# 341 "<built-in>" 3
# 1 "<command line>" 1
# 1 "<built-in>" 2
# 1 "vendor/mediatek/proprietary/hardware/fstab/mt6765/fstab.in.mt6765" 2
# 145 "vendor/mediatek/proprietary/hardware/fstab/mt6765/fstab.in.mt6765"
system /system ext4 ro wait,avb=vbmeta_system,logical,first_stage_mount,avb_keys=/avb/q-gsi.avbpubkey:/avb/r-gsi.avbpubkey:/avb/s-gsi.avbpubkey,slotselect
system_ext /system_ext ext4 ro wait,avb=vbmeta_system,logical,first_stage_mount,avb_keys=/avb/q-gsi.avbpubkey:/avb/r-gsi.avbpubkey:/avb/s-gsi.avbpubkey,slotselectvendor /vendor ext4 ro wait,avb,logical,first_stage_mount,slotselectproduct /product ext4 ro wait,avb,logical,first_stage_mount,slotselect
# 170 "vendor/mediatek/proprietary/hardware/fstab/mt6765/fstab.in.mt6765"
/dev/block/by-name/md_udc /metadata ext4 noatime,nosuid,nodev,discard wait,check,formattable,first_stage_mount/dev/block/by-name/userdata /data f2fs noatime,nosuid,nodev,discard,noflush_merge,reserve_root=134217,resgid=1065,inlinecrypt latemount,wait,check,quota,reservedsize=128M,formattable,resize,,checkpoint=fs,fileencryption=aes-256-xts:aes-256-cts:v2,keydirectory=/metadata/vold/metadata_encryption/dev/block/by-name/protect1 /mnt/vendor/protect_f ext4 noatime,nosuid,nodev,noauto_da_alloc,commit=1,nodelalloc wait,check,formattable
/dev/block/by-name/protect2 /mnt/vendor/protect_s ext4 noatime,nosuid,nodev,noauto_da_alloc,commit=1,nodelalloc wait,check,formattable
/dev/block/by-name/nvdata /mnt/vendor/nvdata ext4 noatime,nosuid,nodev,noauto_da_alloc,commit=1,nodelalloc wait,check,formattable
/dev/block/by-name/nvcfg /mnt/vendor/nvcfg ext4 noatime,nosuid,nodev,noauto_da_alloc,commit=1,nodelalloc wait,check,formattable/dev/block/by-name/persist /mnt/vendor/persist ext4 noatime,nosuid,nodev,noauto_da_alloc,commit=1,nodelalloc wait,check,formattable/devices/platform/externdevice* auto auto defaults voldmanaged=sdcard1:auto,encryptable=userdata/devices/platform/mt_usb* auto vfat defaults voldmanaged=usbotg:auto/dev/block/by-name/frp /persistent emmc defaults defaults/dev/block/by-name/nvram /nvram emmc defaults defaults
/dev/block/by-name/proinfo /proinfo emmc defaults defaults
/dev/block/by-name/lk /bootloader emmc defaults defaults
/dev/block/by-name/lk2 /bootloader2 emmc defaults defaults
/dev/block/by-name/para /misc emmc defaults defaults/dev/block/by-name/boot /boot emmc defaults first_stage_mount,nofail,slotselect
# 210 "vendor/mediatek/proprietary/hardware/fstab/mt6765/fstab.in.mt6765"
/dev/block/by-name/vbmeta_vendor /vbmeta_vendor emmc defaults first_stage_mount,nofail,slotselect
/dev/block/by-name/vbmeta_system /vbmeta_system emmc defaults first_stage_mount,nofail,slotselect,avb=vbmeta/dev/block/by-name/logo /logo emmc defaults defaults
/dev/block/by-name/expdb /expdb emmc defaults defaults
/dev/block/by-name/seccfg /seccfg emmc defaults defaults/dev/block/by-name/tee1 /tee1 emmc defaults defaults
/dev/block/by-name/tee2 /tee2 emmc defaults defaults/dev/block/by-name/scp1 /scp1 emmc defaults defaults
/dev/block/by-name/scp2 /scp2 emmc defaults defaults/dev/block/by-name/sspm_1 /sspm_1 emmc defaults defaults
/dev/block/by-name/sspm_2 /sspm_2 emmc defaults defaults/dev/block/by-name/md1img /md1img emmc defaults defaults
/dev/block/by-name/md1dsp /md1dsp emmc defaults defaults
/dev/block/by-name/md1arm7 /md1arm7 emmc defaults defaults
/dev/block/by-name/md3img /md3img emmc defaults defaults/dev/block/by-name/gz1 /gz1 emmc defaults defaults
/dev/block/by-name/gz2 /gz2 emmc defaults defaults/dev/block/by-name/spmfw /spmfw emmc defaults defaults/dev/block/by-name/boot_para /boot_para emmc defaults defaults
/dev/block/by-name/odmdtbo /odmdtbo emmc defaults defaults
/dev/block/by-name/dtbo /dtbo emmc defaults defaults/dev/block/by-name/vbmeta /vbmeta emmc defaults defaults
D50:/vendor/etc #

如上格式,此文件可以解析如下三部分

那么我们在源代码是如何配置的呢?MTK可以参考如下逻辑,后文详细解读各大配置参数

1.3 FirstStageMount::DoCreateDevices

//aosp/system/core/init/first_stage_mount.cpp
bool FirstStageMount::DoCreateDevices() {if (!InitDevices()) return false;// Mount /metadata before creating logical partitions, since we need to// know whether a snapshot merge is in progress.auto metadata_partition = std::find_if(fstab_.begin(), fstab_.end(), [](const auto& entry) {//从fstab配置表中寻找/metadata分区的信息,此分区很重要存储了一些元数据和秘钥相关的东西return entry.mount_point == "/metadata";});if (metadata_partition != fstab_.end()) {//首先需要挂载/metadata分区,因为它太重要了if (MountPartition(metadata_partition, true /* erase_same_mounts */)) {// Copies DSU AVB keys from the ramdisk to /metadata.// Must be done before the following TrySwitchSystemAsRoot().// Otherwise, ramdisk will be inaccessible after switching root.//它为什么重要,就是因为拷贝AVB Key到这个目录,详细的待后续研究CopyDsuAvbKeys();}}//创建逻辑分区if (!CreateLogicalPartitions()) return false;return true;
}

流程1:如上逻辑首先挂载了/metadata分区,为什么要先挂载它?

流程2:/metadata分区挂载流程对应日志:注意这里调用了metadata_partition函数传递了参数,所以只挂载了一个分区

流程3:创建逻辑分区,那么何为逻辑分区?从下面日志来看个人理解它类似与PC的C盘来区别于其他磁盘,因此这里的逻辑分区通常为system/vendor几个目录

如上日志对应逻辑代码如下:

1.4 FirstStageMount::DoFirstStageMount

//aosp/system/core/init/first_stage_mount.cpp
bool FirstStageMount::DoFirstStageMount() {if (!IsDmLinearEnabled() && fstab_.empty()) {// Nothing to mount.LOG(INFO) << "First stage mount skipped (missing/incompatible/empty fstab in device tree)";return true;}//挂载分区if (!MountPartitions()) return false;    return true;
}

这里的主要流程还是去调用MountPartitions()去挂载分区,注意这里不像metadata哪里传递了参数,因此这里是根据fstab表去挂载所有其他分区,代码如下:

2、fstab文件参数解读

3、fs_mgr挂载分区

接着init的FirstStageMount::MountPartition通过fstab表来挂载单个分区,如下逻辑,在对底层设备块相关初始化之后通过fs_mgr来进行单个分区的挂载。

//aosp/system/core/init/first_stage_mount.cpp
bool FirstStageMount::MountPartition(const Fstab::iterator& begin, bool erase_same_mounts, Fstab::iterator* end) {// Sets end to begin + 1, so we can just return on failure below.if (end) {*end = begin + 1;}if (!fs_mgr_create_canonical_mount_point(begin->mount_point)) {return false;}//跟底层设备块有关系,暂时没有深入研究if (begin->fs_mgr_flags.logical) {if (!fs_mgr_update_logical_partition(&(*begin))) {return false;}if (!block_dev_init_.InitDmDevice(begin->blk_device)) {return false;}}if (!SetUpDmVerity(&(*begin))) {PLOG(ERROR) << "Failed to setup verity for '" << begin->mount_point << "'";return false;}//核心代码,通过fs_mgr去进行挂载bool mounted = (fs_mgr_do_mount_one(*begin) == 0);// Try other mounts with the same mount point.Fstab::iterator current = begin + 1;for (; current != fstab_.end() && current->mount_point == begin->mount_point; current++) {if (!mounted) {// blk_device is already updated to /dev/dm-<N> by SetUpDmVerity() above.// Copy it from the begin iterator.current->blk_device = begin->blk_device;mounted = (fs_mgr_do_mount_one(*current) == 0);}}if (erase_same_mounts) {current = fstab_.erase(begin, current);}if (end) {*end = current;}return mounted;
}
//aosp/system/core/fs_mgr/fs_mgr.cpp
// wrapper to __mount() and expects a fully prepared fstab_rec,
// unlike fs_mgr_do_mount which does more things with avb / verity etc.
int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& alt_mount_point) {// First check the filesystem if requested.if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {LERROR << "Skipping mounting '" << entry.blk_device << "'";}auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point;//步骤1:挂载前的准备工作,其实就是解析fstab分区配置的各种参数int ret = prepare_fs_for_mount(entry.blk_device, entry, mount_point);// Wiped case doesn't require to try __mount below.if (ret & FS_STAT_INVALID_MAGIC) {return FS_MGR_DOMNT_FAILED;}//步骤2:正式进行文件分区的挂载ret = __mount(entry.blk_device, mount_point, entry);if (ret) {ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED;}return ret;
}

如上代码进行总结如下:

  • init最后通过libfs_mgr最后调用了fs_mgr.cpp来进行文件分区的挂载
  • 首先通过prepare_fs_for_mount来解析fstab里面配置的一系列参数
  • 最后通过__mount来进行文件分区的挂载

3.1 挂载前的准备工作prepare_fs_for_mount

总结如上代码逻辑,主要做了如下几个步骤:

  • tune_quota:Enable/disable quota support on the filesystem if needed
  • resize_fs:重置文件系统
  • check_fs:校验文件系统
  • tune_reserved_size:ext4支持
  • tune_encrypt:ext4支持
  • tune_verity:ext4支持
  • tune_casefold:ext4支持
  • tune_metadata_csum:ext4支持

3.2 挂载文件分区流程__mount

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/29820.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Chain of Draft: 借鉴人类草稿思维让大型语言模型更快地思考

这个研究探讨了大型语言模型&#xff08;LLMs&#xff09;在执行复杂推理任务时面临的计算资源消耗与响应延迟问题。研究特别聚焦于思维链&#xff08;Chain-of-Thought, CoT&#xff09;提示范式的效率局限性。CoT虽然有效&#xff0c;但在推理过程中需要生成冗长、详尽的逐步…

《A++ 敏捷开发》- 18 软件需求

需求并不是关于需求 (Requirements are not really about requirements) 大家去公共图书馆寄存物品&#xff0c;以前都是扫二维码开箱&#xff0c;有些图书馆升级了使用指纹识别。 “是否新方法比以前好&#xff1f;”我问年轻的开发人员。 “当然用指纹识别好。新技术&#x…

【智能体架构:Agent】LangChain智能体类型ReAct、Self-ASK的区别

1. 什么是智能体 将大语言模型作为一个推理引擎。给定一个任务&#xff0c; 智能体自动生成完成任务所需步骤&#xff0c; 执行相应动作&#xff08;例如选择并调用工具&#xff09;&#xff0c; 直到任务完成。 2. 先定义工具&#xff1a;Tools 可以是一个函数或三方 API也…

Vue进阶之Vue3源码解析(一)

Vue3源码解析 目录结构编译compiler-corepackage.jsonsrc/index.ts 入口文件src/compile.ts生成ASTsrc/parse.ts 代码转换src/transform.ts几种策略模式src/transforms/transformElement.tssrc/transforms/transformText.tssrc/transforms/transformExpression.ts 代码生成src/…

servlet tomcat

在spring-mvc demo程序运行到DispatcherServlet的mvc处理 一文中&#xff0c;我们实践了浏览器输入一个请求&#xff0c;然后到SpringMvc的DispatcherServlet处理的整个流程. 设计上这些都是tomcat servlet的处理 那么究竟这是怎么到DispatcherServlet处理的&#xff0c;本文将…

【我的待办(MyTodolists)-免费无内购的 IOS 应用】

我的待办&#xff08;MyTodolists&#xff09; 我的待办&#xff1a;智能任务管理助手应用说明主要功能为什么选择"我的待办"&#xff1f;隐私保障使用截图 我的待办&#xff1a;智能任务管理助手 应用说明 "我的待办"是一款智能化的任务管理应用&#x…

GCC RISCV 后端 -- C语言语法分析过程

在 GCC 编译一个 C 源代码时&#xff0c;先会通过宏处理&#xff0c;形成 一个叫转译单元&#xff08;translation_unit&#xff09;&#xff0c;接着进行语法分析&#xff0c;C 的语法分析入口是 static void c_parser_translation_unit(c_parser *parser); 接着就通过类似递…

Vim复制内容到系统剪切板

参考链接 【Vim】Vim 中将文件内容复制到系统剪切板的方法_vi 复制到系统剪贴板-CSDN博客 [转]vim如何复制到系统剪贴板 - biiigwang - 博客园 1. 确定Vim是否支持复制到系统剪切板 输入命令 vim --version | grep clipboard 如果是开头&#xff0c;说明支持系统剪切板&…

测试用大模型组词

已经把hanzi-writer的js的调用、hanzi-writer调用的数千个汉字的json文件&#xff0c;全都放在本地了。虽然用的办法还是比较笨的。我注意到 大模型也可以部署本地&#xff0c;虽然使用频率低的情况下不划算。 尝试直接通过html的javascript通过api key调用大语言模型&#x…

华为eNSP:配置单区域OSPF

一、什么是OSPF&#xff1f; OSPF&#xff08;Open Shortest Path First&#xff0c;开放最短路径优先&#xff09;是一种链路状态路由协议&#xff0c;属于内部网关协议&#xff08;IGP&#xff09;&#xff0c;主要用于在单一自治系统&#xff08;AS&#xff09;内部动态发现…

P62 线程

这篇文章我们来讲一下线程。截止到目前&#xff0c;我们的代码都是在单线程上运行的&#xff0c;现在看起来没有什么问题&#xff0c;但是目前所有的计算机几乎都不只有一个逻辑线程&#xff0c;所以如果我们一直使用单线程运行&#xff0c;这样的话效率会很低。尤其是如果我们…

Android AudioFlinger(五)—— 揭开AudioMixer面纱

前言&#xff1a; 在 Android 音频系统中&#xff0c;AudioMixer 是音频框架中一个关键的组件&#xff0c;用于处理多路音频流的混音操作。它主要存在于音频回放路径中&#xff0c;是 AudioFlinger 服务的一部分。 上一节我们讲threadloop的时候&#xff0c;提到了一个函数pr…

im即时聊天客服系统SaaS还是私有化部署:成本、安全与定制化的权衡策略

随着即时通讯技术的不断发展&#xff0c;IM即时聊天客服系统已经成为企业与客户沟通、解决问题、提升用户体验的重要工具。在选择IM即时聊天客服系统时&#xff0c;企业面临一个重要决策&#xff1a;选择SaaS&#xff08;软件即服务&#xff09;解决方案&#xff0c;还是进行私…

DeepSeek系列模型技术报告的阅读笔记

DeepSeek系列模型技术报告的阅读笔记 之前仔细阅读了DeepSeek系列模型的主要技术方面内容与发展脉络&#xff0c;以下是DeepSeek系列模型技术报告的笔记&#xff0c;有错误的地方欢迎指正&#xff01; 文章目录 DeepSeek系列模型技术报告的阅读笔记GQADeepseek MoEAbstractIn…

【VUE】第二期——生命周期及工程化

目录 1 生命周期 1.1 介绍 1.2 钩子 2 可视化图表库 3 脚手架Vue CLI 3.1 使用步骤 3.2 项目目录介绍 3.3 main.js入口文件代码介绍 4 组件化开发 4.1 组件 4.2 普通组件注册 4.2.1 局部注册 4.2.2 全局注册 1 生命周期 1.1 介绍 Vue生命周期&#xff1a;就是…

Spring-framework源码编译

版本统一&#xff08;搭配其他版本会遇到不可知错误&#xff09;&#xff1a; 1&#xff09;spring 5.2.X&#xff08;5.5.26&#xff09; 2&#xff09;JDK8 3&#xff09;Gradle:5.6.4 可以在gradle-wrapper.properties中修改 https\://services.gradle.org/distribution…

使用 Deepseek + kimi 快速生成PPT

前言 最近看到好多文章和视频都在说&#xff0c;使用 Deepseek 和 kimi 能快速生成精美的 ppt&#xff0c;毕竟那都是别人说的&#xff0c;只有自己尝试一次才知道结果。 具体操作 第一步&#xff1a;访问 deepseek 我们访问 deepseek &#xff0c;把我们想要输入的内容告诉…

火绒终端安全管理系统V2.0--纵深防御体系(分层防御)之规则拦截层

火绒终端安全管理系统V2.0--多层次主动防御系统。 率先将单步防御和多步恶意监控相结合&#xff0c;监控百个防御点&#xff08;包含防火墙&#xff09;&#xff0c;有效阻止各种恶意程序对系统的攻击和篡改&#xff0c;保护终端脆弱点。 ✅ 内容拦截层&#xff08;Content-B…

如何在WPS中接入DeepSeek并使用OfficeAI助手(超细!成功版本)

目录 第一步&#xff1a;下载并安装OfficeAI助手 第二步&#xff1a;申请API Key 第三步:两种方式导入WPS 第一种:本地大模型Ollama 第二种APIKey接入 第四步&#xff1a;探索OfficeAI的创作功能 工作进展汇报 PPT大纲设计 第五步&#xff1a;我的使用体验(体验建议) …

力扣35.搜索插入位置-二分查找

class Solution:def searchInsert(self, nums: List[int], target: int) -> int:# 初始化左右指针left, right 0, len(nums) - 1# 当左指针小于等于右指针时&#xff0c;继续循环while left < right:# 计算中间位置mid (left right) // 2# 如果中间元素等于目标值&…