AI大语言模型GPT —— R 生态环境领域数据统计分析

自2022年GPT(Generative Pre-trained Transformer)大语言模型的发布以来,它以其卓越的自然语言处理能力和广泛的应用潜力,在学术界和工业界掀起了一场革命。在短短一年多的时间里,GPT已经在多个领域展现出其独特的价值,特别是在数据统计分析领域。GPT的介入为数据处理、模型构建和结果解释带来了前所未有的便利。与此同时,R语言凭借其开源、自由、免费的特性,成为了统计分析和数据可视化的主流工具。R语言的丰富程序包生态系统和强大的社区支持,使其在处理复杂数据分析任务时表现出色。GPT大语言模型在助力利用R语言开展数据统计分析方面有着令人遐想的广阔空间。然而,生态环境领域数据往往具有高度的异质性和复杂性,这要求分析者不仅要有扎实的统计学基础,还需要能够灵活运用各种统计模型和方法。GPT在这方面展现出巨大的潜力,它不仅能够帮助研究者理解和选择合适的统计模型,还能在数据分析过程中提供实时的指导和建议,极大地提高了研究效率。

AI与R统计分析的深度融合:将GPT的先进自然语言处理技术与R语言的统计分析能力相结合,为学员提供一种全新的数据分析体验,使他们能够在生态环境研究中更高效地处理复杂数据。

理论与实践的完美结合:内容通过丰富的案例操作和实践项目,确保学员能够在掌握理论知识的同时,迅速将其应用于实际数据分析任务中,提升解决实际问题的能力。

专题一

GPT及大语言模型简介及使用入门

1. GPT大语言模型简介:定义、架构及发展历程

2. GPT大语言模型使用入门

2.1账号注册、交互界面

2.2 与GPT大语言模型‘面对面’

3. GPT的应用场景介绍:生活助理、数据分析辅助等

4. GPT大语言模型提示词(prompt)

4.1提示词设计原则

4.2提示词类型与应用

4.3提高大语言模型回答质量案例

5. GPT与R语言结合开展数据分析辅助展望

专题二

GPT与R语言基础与作图(ggplot2)

1.GPT辅助安装与配置R和RStudio。

2.GPT辅助学习R中变量、数据类型、函数等

3.GPT辅助开展R语言数据操作:文件读取、数据清洗、筛选等

4.GPT辅助学习R语言程序包和函数用途和用法

5.GPT辅助R语言实现ggplot2作图

5.1 基础作图类型:散点图、箱线图、频率图、提琴图、峰峦图等

5.2 高级作图技巧: 多图组合、排版及生成高质量图(论文发表)

专题三

 GPT与R语言回归模型(lm&glm)

1.一般线性模型和广义线性模型介绍及GPT辅助:基本原理、假设条件及应用情景等

2.一般线性模型(lm)R语言实现

2.1 GPT辅助lm()函数的示例代码、参数和输出结果解释

2.2 GPT辅助一般线性模型构建与评估实例:数据准备、模型拟合、结果解释、作图等。

2.3 GPT辅助模型诊断: 模型可加性、残差正态性、方差异质性、奇异值等。

2.4 GPT辅助开展一般线性模型的模型选择案例:逐步回归

3.广义线性模型(GLM)R语言实现

  3.1 GPT辅助glm()函数构建广义回归模型、链接函数、分布族、模型比较。

3.2 GPT辅助开展逻辑斯蒂回归(0,1数据)案例

  3.3 GPT辅助开展泊松回归(计数数据)案例:泊松、负二项分布、零膨胀、零截断

专题四

GPT与混合效应模型(lmm&glmm)

1.混合效应模型简介及GPT辅助:嵌套数据、固定效应、随机效应等基本概念

2.线性混合效应模型(lmm)R语言实现

2.1 GPT辅助lme4包的使用指南

2.2 GPT辅助模型构建案例:模型类型确定(随机截距/随机截距)、模型比较和诊断

2.3 GPT辅助模型结果解读、描述及作图

3. 广义线性混合效应模型(glmm) R语言实现

3.1 GPT辅助根据数据特征选择合适的广义线性混合模型误差分布及程序包

  3.2 GPT辅助二项分布(0,1)混合效应模型案例:数据检查、模型构建、结果展示

  3.3 GPT辅助计数数据混合效应模型案例:泊松、过度离散、零膨胀及零截断

4. GPT辅助混合效应模型的模型选择案例(模型average)

专题五

 GPT与多元统计分析(排序、聚类和分组差异检验)

1.多元统计分析技术在生态环境数据分析应用简介及GPT辅助

2.多元统计中的排序技术R语言实现

2.1 GPT辅助非约束排序(PCA、PCoA、NMDS)分析:模型选择、结果解读及作图

2.2 GPT辅助约束排序(RDA、db-RDA)分析:数据筛选、变量选择、结果解读及作图

3.多元统计中的聚类分析R语言实现

3.1 GPT辅助层次聚类(hclust):数据检查、聚类聚类质量评估、结果解读及作图

3.2 GPT辅助非层次聚类(kmeans):数据检查、聚类聚类质量评估、结果解读及作图。

4.多元统计中的分组差异检验R语言实现

  4.1 GPT辅助非参数多元方差分析(PERMANOVA)分析案例

  4.2 GPT辅助非参数多元方差分析(PERMANOVA)与非约束排序(PCoA)结合案例

专题六

 GPT与结构方程模型(lavaan)

1.结构方程模型(SEM)基本原理及GPT辅助

2.结构方程模型(lavaan)模型构建R语言实现案例

2.1 GPT辅助初始模型构建

2.2 GPT辅助模型调整

2.3 GPT辅助模型评估及结果表达

3. GPT辅助结构方程模型(lavaan)复合变量(composite)分析R语言实现案例

4. GPT辅助结构方程模型(lavaan)潜变量(latent)分析R语言实现案例

专题七

 GPT与生态环境领域数据分析其他高阶方法实战案例

1.GPT辅助时间、空间及系统发育相关数据回归分析

2.GPT辅助非线性数据(广义可加模型和非线性模型)回归模型分析

3.GPT辅助随机森林(Random Forest)模型在生态环境领域应用

4. GPT辅助贝叶斯回归模型在生态环境领域应用

5. GPT辅助Meta分析在生态环境领域应用

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247684384&idx=3&sn=0bfa03965ed23bd6eee2ea5d5eeebb17&chksm=fa774e1dcd00c70b88df841d0840b945c50ed904f793870ca944a69c5fa54c6ac03c471e4212&token=1951424712&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/299499.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据挖掘入门项目二手交易车价格预测之建模调参

文章目录 目标步骤1. 调整数据类型,减少数据在内存中占用的空间2. 使用线性回归来简单建模3. 五折交叉验证4. 模拟真实业务情况5. 绘制学习率曲线与验证曲线6. 嵌入式特征选择6. 非线性模型7. 模型调参(1) 贪心调参(2)…

C++从入门到精通——初步认识面向对象及类的引入

初步认识面向对象及类的引入 前言一、面向过程和面向对象初步认识C语言C 二、类的引入C的类名代表什么示例 C与C语言的struct的比较成员函数访问权限继承默认构造函数默认成员初始化结构体大小 总结 前言 面向过程注重任务的流程和控制,适合简单任务和流程固定的场…

电商技术揭秘八:搜索引擎中的SEO内部链接建设与外部推广策略

文章目录 引言一、 内部链接结构优化1.1 清晰的导航链接1. 简洁明了的菜单项2. 逻辑性的布局3. 避免深层次的目录结构4. 使用文本链接5. 突出当前位置6. 移动设备兼容性 1.2 面包屑导航1. 显示当前页面位置2. 可点击的链接3. 简洁性4. 适当的分隔符5. 响应式设计6. 避免重复主页…

c# wpf XmlDataProvider 简单试验

1.概要 2.代码 <Window x:Class"WpfApp2.Window12"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expression/blend…

Debian12 使用 nginx 与 php8.2 使用 Nextcloud

最近将小服务器升级了下系统&#xff0c;使用了 debian12 的版本&#xff0c;正好试试 nginx 和 php-fpm 这种方式运行 Nextcloud 这个私有云的配置。 一、基本系统及应用安装 系统&#xff1a;debian12 x86_64 位版本最小安装&#xff0c;安装后可根据自己需求安装一些工具&…

《图解Vue3.0》- 调试

如何对vue3项目进行调试 调试是开发过程中必备的一项技能&#xff0c;掌握了这项技能&#xff0c;可以很好的定义bug所在。一般在开发vue3项目时&#xff0c;有三种方式。 代码中添加debugger;使用浏览器调试&#xff1a;sourcemap需启用vs code 调试&#xff1a;先开启node服…

python标准数据类型--集合常用方法

在Python中&#xff0c;集合&#xff08;Set&#xff09;是一种无序且不重复的数据结构&#xff0c;它是由一个无序的、不重复的元素组成的。Python中的集合与数学中的集合概念相似&#xff0c;并且支持一系列常用的方法。本篇博客将深入介绍Python集合的常用方法&#xff0c;帮…

《QT实用小工具·十五》多种样式的开关控件

1、概述 源码放在文章末尾 目前实现了三种样式的开关控件按钮&#xff0c;如下所示&#xff1a; 项目部分代码如下所示&#xff1a; #ifndef IMAGESWITCH_H #define IMAGESWITCH_H/*** 图片开关控件 * 1. 自带三种开关按钮样式。* 2. 可自定义开关图片。*/#include <QWid…

小米汽车su7全色系展示源码

源码简介 小米汽车全色系展示源码&#xff0c;小米汽车su7全色系展示源码 安装教程 纯HTML&#xff0c;直接将压缩包上传网站目录解压即可 首页截图 源码下载 小米汽车su7全色系展示源码-小8源码屋源码简介 小米汽车全色系展示源码&#xff0c;小米汽车su7全色系展示源码 …

(二)小案例银行家应用程序-创建DOM元素

● 上图的数据很明显是从我们账户数组中拿到了&#xff0c;我们刚刚学习了forEach&#xff0c;所以我们使用forEach来创建我们的DOM元素&#xff1b; const displayMovements function (movements) {movements.forEach((mov, i) > {const type mov > 0 ? deposit : w…

如何在 Ubuntu 上安装和配置 Tomcat 服务器?

简介&#xff1a;最近有粉丝朋友在问如何在 Ubuntu 上安装和配置 Tomcat 服务器&#xff1f;今天特地写这篇文章进行解答&#xff0c;希望能够帮助到大家。 文章目录 Ubuntu上安装和配置Tomcat的详细步骤Tomcat在Linux环境下的安装与配置一、下载并上传Tomcat压缩包二、启动To…

Flutter开发进阶之错误信息

Flutter开发进阶之错误信息 在Flutter开发中错误信息通常是由Exception和Error表示&#xff0c;Error表示严重且不可恢复的错误&#xff0c;一般会导致程序直接终止&#xff0c;而Exception可以被显式抛出&#xff0c;一般为代码逻辑错误&#xff0c;根据Flutter的解释说Excep…

无监督学习简介

无监督学习简介 一、定义和核心概念 无监督学习的定义 无监督学习是机器学习的一个关键分支&#xff0c;它涉及到从未标注数据中学习和提取信息。不同于其他学习类型&#xff0c;无监督学习的数据集没有提供任何显式的输出标签或结果。因此&#xff0c;这种学习方法的主要任务…

最优乘车

题目描述 H 城是一个旅游胜地&#xff0c;每年都有成千上万的人前来观光。为方便游客&#xff0c;巴士公司在各个旅游景点及宾馆&#xff0c;饭店等地都设置了巴士站并开通了一些单程巴上线路。每条单程巴士线路从某个巴士站出发&#xff0c;依次途经若干个巴士站&#xff0c;…

力扣---分隔链表

给你一个链表的头节点 head 和一个特定值 x &#xff0c;请你对链表进行分隔&#xff0c;使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你应当 保留 两个分区中每个节点的初始相对位置。 示例 1&#xff1a; 输入&#xff1a;head [1,4,3,2,5,2], x 3 输出&a…

SSL VPN

1、SSL (Secure Sockets Layer)一种加密的通讯协定,用在使用者与网服器之间 【1】安全套接层 位于传输层和应用层之间,保护应用层的数据(HTTPS(443)=HTTP+TLS) 【2】版本 SSLv2 SSLv3 修改→TLS (Transport Layer Security)安全传输层协议,) 【3】模式 采用…

机器学习笔记 - 文字转语音技术路线简述以及相关工具不完全清单

一、TTS技术简述 今天的文本到语音转换技术(TTS)的目标已经不仅仅是让机器说话,而是让它们听起来像不同年龄和性别的人类。通常,TTS 系统合成器的质量是从不同方面进行评估的,包括合成语音的清晰度、自然度和偏好,以及人类感知因素,例如可理解性。 1、技术路线 (1)基…

linux 安装 pptp 协议

注意&#xff1a;目前iOS已不支持该协议 yum -y install ppp wget https://download-ib01.fedoraproject.org/pub/epel/7/x86_64/Packages/p/pptpd-1.4.0-2.el7.x86_64.rpm yum -y install pptpd-1.4.0-2.el7.x86_64.rpm vi /etc/pptpd.conf 去除 localip 和 remoteip的注释 …

基于沙漏 Tokenizer 的高效三维人体姿态估计框架HoT

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 摘要Abstract文献阅读&#xff1a;基于沙漏 Tokenizer 的高效三维人体姿态估计框架HoT1、研究背景2、提出方法3、模块详细3.1、什么是HoT3.2、HoT 框架3.3、Token 剪…

面试经典-Spring篇

1、解释Spring框架中bean的生命周期 实例化 通过反射去推断构造函数进行实例化 实例工厂、静态工厂 属性赋值 解析自动装配&#xff08;byname、bytype、 constractor、 Autowired&#xff09; 循环依赖 初始化 调用XXXAware回调方法&#xff08;BeanNameAware、BeanFactoryAw…