二分查找 -- 力扣(LeetCode)第704题

题目

https://leetcode.cn/problems/binary-search/description/

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9     
输出: 4       
解释: 9 出现在 nums 中并且下标为 4     

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2     
输出: -1        
解释: 2 不存在 nums 中因此返回 -1    

提示:

  • 你可以假设 nums 中的所有元素是不重复的。
  • n 将在 [1, 10000]之间。
  • nums 的每个元素都将在 [-9999, 9999]之间。

思路

这道题前提是数组为有序数组,同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的,这些都是使用二分法的前提条件,当大家看到题目描述满足如上条件的时候,可要想一想是不是可以用二分法了。

二分查找涉及的很多的边界条件,逻辑比较简单,但就是写不好。例如到底是 while(left < right) 还是 while(left <= right),到底是right = middle呢,还是要right = middle - 1呢?

大家写二分法经常写乱,主要是因为对区间的定义没有想清楚,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。

写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。

下面我用这两种区间的定义分别讲解两种不同的二分写法。

二分法 第一种写法

第一种写法,我们定义 target 是在一个在左闭右闭的区间里,也就是[left, right] (这个很重要非常重要)

区间的定义这就决定了二分法的代码应该如何写,因为定义target在[left, right]区间,所以有如下两点:

  • while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
  • if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1

例如在数组:1,2,3,4,7,9,10中查找元素2,如图所示:

代码如下:(详细注释)(C++)

// 版本一
class Solution {
public:int search(vector<int>& nums, int target) {int left = 0;int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2if (nums[middle] > target) {right = middle - 1; // target 在左区间,所以[left, middle - 1]} else if (nums[middle] < target) {left = middle + 1; // target 在右区间,所以[middle + 1, right]} else { // nums[middle] == targetreturn middle; // 数组中找到目标值,直接返回下标}}// 未找到目标值return -1;}
};
  • 时间复杂度:O(log n)
  • 空间复杂度:O(1)

二分法第二种写法

如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) ,那么二分法的边界处理方式则截然不同。

有如下两点:

  • while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
  • if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]

在数组:1,2,3,4,7,9,10中查找元素2,如图所示:(注意和方法一的区别

代码如下:(详细注释)(C++)

// 版本二
class Solution {
public:int search(vector<int>& nums, int target) {int left = 0;int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <int middle = left + ((right - left) >> 1);if (nums[middle] > target) {right = middle; // target 在左区间,在[left, middle)中} else if (nums[middle] < target) {left = middle + 1; // target 在右区间,在[middle + 1, right)中} else { // nums[middle] == targetreturn middle; // 数组中找到目标值,直接返回下标}}// 未找到目标值return -1;}
};
  • 时间复杂度:O(log n)
  • 空间复杂度:O(1)

总结

二分法是非常重要的基础算法,为什么很多同学对于二分法都是一看就会,一写就废

其实主要就是对区间的定义没有理解清楚,在循环中没有始终坚持根据查找区间的定义来做边界处理。

区间的定义就是不变量,那么在循环中坚持根据查找区间的定义来做边界处理,就是循环不变量规则。

本篇根据两种常见的区间定义,给出了两种二分法的写法,每一个边界为什么这么处理,都根据区间的定义做了详细介绍。

相信看完本篇应该对二分法有更深刻的理解了。

注意

在下面的代码中,使用 middle = left + (right - left) / 2 而不是 middle = (left + right) / 2 的主要原因是为了防止整数溢出。

当 left 和 right 都很大且接近 int 类型的最大值时,它们的和可能会超出 int 类型能够表示的范围,从而导致溢出。溢出后的结果再除以2,可能会导致一个不正确的中间索引值。

为了避免这种溢出情况,我们计算 right - left,这个差值一定小于或等于 right,然后再加到 left 上。这样即使 right 很大,right - left 仍然是一个可以安全处理的整数,再与 left 相加,并进行整数除法,就可以得到一个正确的中间索引,而不会导致溢出。

因此,虽然 middle = (left + right) / 2 在很多情况下也能正常工作,但在处理非常大的整数时,使用 middle = left + (right - left) / 2 更为稳妥和安全。这是一种常见的二分查找算法中的优化技巧,用于确保代码在极端情况下也能正确运行。

小提示

对于 middle = left + (right - left) / 2,这个表达式中的操作包括加法、减法和整数除法。在这个特定的表达式中,减法和加法具有相同的优先级,并且都是左结合的,所以它们会按照从左到右的顺序进行。整数除法 / 在这个表达式中的优先级低于加法和减法,所以加法和减法会首先进行。

其他语言版本

Java

(版本一)左闭右闭区间

class Solution {public int search(int[] nums, int target) {// 避免当 target 小于nums[0] nums[nums.length - 1]时多次循环运算if (target < nums[0] || target > nums[nums.length - 1]) {return -1;}int left = 0, right = nums.length - 1;while (left <= right) {int mid = left + ((right - left) >> 1);if (nums[mid] == target)return mid;else if (nums[mid] < target)left = mid + 1;else if (nums[mid] > target)right = mid - 1;}return -1;}
}

(版本二)左闭右开区间

class Solution {public int search(int[] nums, int target) {int left = 0, right = nums.length;while (left < right) {int mid = left + ((right - left) >> 1);if (nums[mid] == target)return mid;else if (nums[mid] < target)left = mid + 1;else if (nums[mid] > target)right = mid;}return -1;}
}

Python

(版本一)左闭右闭区间

class Solution:def search(self, nums: List[int], target: int) -> int:left, right = 0, len(nums) - 1  # 定义target在左闭右闭的区间里,[left, right]while left <= right:middle = left + (right - left) // 2if nums[middle] > target:right = middle - 1  # target在左区间,所以[left, middle - 1]elif nums[middle] < target:left = middle + 1  # target在右区间,所以[middle + 1, right]else:return middle  # 数组中找到目标值,直接返回下标return -1  # 未找到目标值

(版本二)左闭右开区间

class Solution:def search(self, nums: List[int], target: int) -> int:left, right = 0, len(nums)  # 定义target在左闭右开的区间里,即:[left, right)while left < right:  # 因为left == right的时候,在[left, right)是无效的空间,所以使用 <middle = left + (right - left) // 2if nums[middle] > target:right = middle  # target 在左区间,在[left, middle)中elif nums[middle] < target:left = middle + 1  # target 在右区间,在[middle + 1, right)中else:return middle  # 数组中找到目标值,直接返回下标return -1  # 未找到目标值

C

(版本一)左闭右闭区间

// (版本一) 左闭右闭区间 [left, right]
int search(int* nums, int numsSize, int target){int left = 0;int right = numsSize-1;int middle = 0;//若left小于等于right,说明区间中元素不为0while(left<=right) {//更新查找下标middle的值middle = (left+right)/2;//此时target可能会在[left,middle-1]区间中if(nums[middle] > target) {right = middle-1;} //此时target可能会在[middle+1,right]区间中else if(nums[middle] < target) {left = middle+1;} //当前下标元素等于target值时,返回middleelse if(nums[middle] == target){return middle;}}//若未找到target元素,返回-1return -1;
}

(版本二)左闭右开区间 

// (版本二) 左闭右开区间 [left, right)
int search(int* nums, int numsSize, int target){int length = numsSize;int left = 0;int right = length;	//定义target在左闭右开的区间里,即:[left, right)int middle = 0;while(left < right){  // left == right时,区间[left, right)属于空集,所以用 < 避免该情况int middle = left + (right - left) / 2;if(nums[middle] < target){//target位于(middle , right) 中为保证集合区间的左闭右开性,可等价为[middle + 1,right)left = middle + 1;}else if(nums[middle] > target){//target位于[left, middle)中right = middle ;}else{	// nums[middle] == target ,找到目标值targetreturn middle;}}//未找到目标值,返回-1return -1;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/301517.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络针对交换机的配置

实验 目的 交换机的基本配置&#xff0c;交换机VLAN配置 实验条件 Windows&#xff0c;Cisco packet tracer 实验 内容 交换机的基本配置&#xff0c;交换机VLAN配置 实验 过程 一、交换机的基本配置 进入特权模式 Switch>enable 进入配置模式 Switch#configure ter…

腾讯电商运营起来竟然这么简单!视频号小店操作玩法一文详解!

大家好&#xff0c;我是电商小布。 在新型电商玩法的兴起下&#xff0c;很多的平台都在电商行业内分到了一杯羹。 腾讯自然也就坐不住了&#xff0c;背靠自身的视频号平台&#xff0c;推出了视频号小店这个项目。 有很多的小伙伴想要趁着这个初期阶段&#xff0c;来加入到其…

数据结构与算法:哈希表

目录 1.哈希表和哈希 1.1.知识引入 1.2.为什么需要哈希表呢&#xff1f; 2.简易的哈希表 2.1.哈希表的基础结构 2.2.如何实现基础的哈希表 2.2.1.增 2.2.2.删 2.2.3.查 2.3.泛型编程下的哈希表 3.简易的哈希桶 1.哈希表和哈希 1.1.知识引入 哈希表&#xff08;Hash …

代码随想录-算法训练营day02【滑动窗口、螺旋矩阵】

专栏笔记&#xff1a;https://blog.csdn.net/weixin_44949135/category_10335122.html https://docs.qq.com/doc/DUGRwWXNOVEpyaVpG?uc71ed002e4554fee8c262b2a4a4935d8977.有序数组的平方 &#xff0c;209.长度最小的子数组 &#xff0c;59.螺旋矩阵II &#xff0c;总结 建议…

【C++进阶】用哈希实现unordered_set和unordered_map的模拟

&#x1fa90;&#x1fa90;&#x1fa90;欢迎来到程序员餐厅&#x1f4ab;&#x1f4ab;&#x1f4ab; 主厨&#xff1a;邪王真眼 主厨的主页&#xff1a;Chef‘s blog 所属专栏&#xff1a;c大冒险 总有光环在陨落&#xff0c;总有新星在闪烁 前言&#xff1a; 之前我…

烧坏两块单片机,不知道原因?

没有看你的原理图&#xff0c;以下是造成烧毁芯片的几个环节&#xff1a; 1. 最大的可能性是你的单片机电机控制输出与电机驱动电路没有隔离。 我的经验&#xff0c;使用STM32控制电机&#xff0c;无论是直流电机脉宽调制&#xff0c;还是步进电机控制&#xff0c;控制电路与…

Ubuntu 20.04.06 PCL C++学习记录(十六)

[TOC]PCL中点云分割模块的学习 学习背景 参考书籍&#xff1a;《点云库PCL从入门到精通》以及官方代码PCL官方代码链接,&#xff0c;PCL版本为1.10.0&#xff0c;CMake版本为3.16 学习内容 用一组点云数据做简单的平面的分割 源代码及所用函数 源代码 #include<iostr…

机器学习笔记 - 深度学习遇到超大图像怎么办?使用 xT 对极大图像进行建模论文简读

作为计算机视觉研究人员,在处理大图像时,避免不了受到硬件的限制,毕竟大图像已经不再罕见,手机的相机和绕地球运行的卫星上的相机可以拍摄如此超大的照片,遇到超大图像的时候,我们当前最好的模型和硬件都会达到极限。 所以通常我们在处理大图像时会做出两个次优选择之一:…

【频繁模式挖掘】FP-Tree算法(附Python实现)

一、实验内容简介 该实验主要使用频繁模式和关联规则进行数据挖掘&#xff0c;在已经使用过Apriori算法挖掘频繁模式后&#xff0c;这次使用FP-tree算法来编写和设计程序&#xff0c;依然使用不同规模的数据集来检验效果&#xff0c;最后分析和探讨实验结果&#xff0c;看其是…

微服务架构下,如何通过弱依赖原则保障系统高可用?

前言 当我初次接触高可用这个概念的时候&#xff0c;对高可用的【少依赖原则】和【弱依赖原则】的边界感模糊&#xff0c;甚至有些“傻傻分不清楚”。这两个原则都关注降低模块之间的依赖关系&#xff0c;但它们之间的确存在某些差异。 那么&#xff0c;「少依赖原则」和「弱…

15.队列集

1.简介 在使用队列进行任务之间的“沟通交流”时&#xff0c;一个队列只允许任务间传递的消息为同一种数据类型&#xff0c;如果需要在任务间传递不同数据类型的消息时&#xff0c;那么就可以使用队列集。FreeRTOS提供的队列集功能可以对多个队列进行“监听”&#xff0c;只要…

Unity类银河恶魔城学习记录12-4 p126 Item Tooltip源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili UI.cs using System.Collections; using System.Collections.Generic; usi…

xilinx AXI CAN驱动开发

CAN收发方案有很多&#xff0c;常见的解决方案通过是采用CAN收发芯片&#xff0c;例如最常用的SJA1000,xilinx直接将CAN协议栈用纯逻辑实现&#xff0c;AXI CAN是其中一种&#xff1b; 通过这种方式硬件上只需外接一个PHY芯片即可 上图加了一个电平转换芯片 软件设计方面&…

Scala大数据开发

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl Scala简述 在此&#xff0c;简要介绍 Scala 的基本信息和情况。 Scala释义 Scala 源自于英语单词scalable&#xff0c;表示可伸缩的、可扩展的含义。 Scala作者 Scala编…

【考研数学】张宇《1000题》刷不动,做不下来怎么办❓

学长肯定是用着效果不错才给你推荐的&#xff0c;但是习题册有很多&#xff0c;各自有不同的风格&#xff0c;1000题适不适合你的情况是你要考虑的点。 选书还是要结合自身的情况&#xff0c;如果当前用着不错的话&#xff0c;继续完全没有问题&#xff0c;核心就是要从自身的…

IT外包服务:企业数据资产化加速利器

随着数字化时代的兴起&#xff0c;数据成为企业最为重要的资源之一。数据驱动创新对于企业的竞争力和可持续发展至关重要。在这一进程中&#xff0c;IT外包服务发挥着关键作用&#xff0c;加速企业数据资产化进程&#xff0c;为企业提供了重要支持。 首先&#xff0c;IT外包服务…

【学习心得】Python中的queue模块使用

一、Queue模块的知识点思维导图 二、Queue模块常用函数介绍 queue模块是内置的&#xff0c;不需要安装直接导入就可以了。 &#xff08;1&#xff09;创建一个Queue对象 import queue# 创建一个队列实例 q queue.Queue(maxsize20) # 可选参数&#xff0c;默认为无限大&am…

基于springboot实现教师人事档案管理系统项目【项目源码+论文说明】

基于springboot实现IT技术交流和分享平台系统演示 摘要 我国科学技术的不断发展&#xff0c;计算机的应用日渐成熟&#xff0c;其强大的功能给人们留下深刻的印象&#xff0c;它已经应用到了人类社会的各个层次的领域&#xff0c;发挥着重要的不可替换的作用。信息管理作为计算…

【chrome扩展】简 Tab (SimpTab)‘每日一句名言’样式

背景&#xff1a;最初参考“每日诗词”发现总是那几句&#xff0c;可以更换API接口完成“每日一句名言” 声明&#xff1a;本人不会ajax及ccs样式&#xff0c;非专业人士&#xff0c;借助CHATGPT代码生成完成。请友善交流。 每一句名言API: "https://api.xygeng.cn/open…

libVLC 提取视频帧

在前面的文章中&#xff0c;我们使用libvlc_media_player_set_hwnd设置了视频的显示的窗口。 libvlc_media_player_set_hwnd(vlc_mediaPlayer, (void *)ui.widgetShow->winId()); 如果我们想要提取每一帧数据&#xff0c;将数据保存到本地&#xff0c;该如何操作呢&#x…