【C++】用红黑树封装map和set

我们之前学的map和set在stl源码中都是用红黑树封装实现的,当然,我们也可以模拟来实现一下。在实现之前,我们也可以看一下stl源码是如何实现的。我们上篇博客写的红黑树里面只是一个pair对象,这对于set来说显然是不合适的,所以要想让一个红黑树的代码同时支持map和set,就用上模板就可以了

我们来看看stl源码中是如何实现的

前两个模板参数是两个类型,就是我们要在set或map中放入什么

set不是只需要放入一个吗?所以,set在传参数的时候是这么传的

它的前两个传的全是Key,它这么实现还是为了兼容map,map传的是什么呢?我们再来看一下

传的一个是Key,一个是pair类的对象。那pair中不是已经有Key了吗,为什么还要传Key呢?因为一个最简单的原因之一find函数的参数是Key。

那么看第三个模板参数keyofvalue,传这个类型是为了从value中找到key,因为我们树这个类传给节点类的时候只传了value,如下图:

因为map中value是一个pair对象,set中value就是key,它们的获取方式不一样,所以传这个参数是为了实现仿函数,来取出key值用于比较

那么了解了这个大体的结构之后,下一个就是要实现我们的迭代器了,我们其实可以在红黑树中实现一个树形的迭代器,然后map和set再封装一层就行了,其实我们的迭代器就是一个类,它用来实现类似于指针的一些操作所以我们就用指针来当作这个类的成员变量在这个类的基础上实现迭代器的功能。

在实现迭代器的时候,最关键的一个函数就是重载++,这里迭代器++肯定是按中序,因为这样才有意义,有顺序,那么我们如何通过一个节点找到它的中序遍历的下一个节点呢?这其实是有规律的。比如我们看这样一颗红黑树

首先我们中序遍历是左子树 右子树

1.假设这个节点有右子树,那么这个节点之后就是它的右子树的中序的第一个节点,就是右子树中最左边的节点

2.假设这个节点没有右子树,那么走完这个节点以后以这个节点为根的树就走完了,假如它是它父亲的左孩子,那么就该走它的父亲,如果它是它父亲的右孩子,那么它父亲也走完了,就按照此规律走它的爷爷。

有了这个理论基础,我们就可以来实现了。

同样--的话跟++是完全相反的,反过来的遍历顺序就是右子树,根,左子树,然后我们再分别去看这棵树有没有左子树,如果有,那就走左子树中第一个该走的节点,就是左子树中最右节点;如果没有,那就看它是它父亲的什么节点,一直往上找,直到找到它是它父亲的右子树的节点,它父亲就是下一个要遍历的节点。

下面还有一些细节问题,比如说把迭代器写成模板

那么只需要传不同的类型就可以实现const或非const的迭代器

我们const对象要用const版本的迭代器,因为const对象用普通版本的属于权限放大,所以我们要设计const版本的迭代器

我们也要对红黑树的插入函数进行修改,原来插入函数返回一个bool值,但是库中应该是返回一个pair对象,其中first是个迭代器,second是个bool值表示是否新插入

看到这样的代码的时候,这个typename表示后面是一个类型名,因为static静态成员也可以指明类域然后去访问

另外,我们这里为什么传const K呢?因为就算是普通的迭代器我们也不希望key值改变,因为map的key值改了就不满足二叉搜索树了

这是如何使用const_iterator,首先s就是一个普通的map对象,就调用普通版本的begin()

调完之后它返回一个iterator,而我们用的const_iterator去接收的,所以要写个构造函数,用普通迭代器构造出const迭代器

那么下面我们再整体的来展示一下红黑树和map set之间的封装关系

这就是如何用红黑树封装出map和set,下面是所有的代码

RBTree.h

#include<iostream>
#include<assert.h>
using namespace std;enum col {RED,BLACK
};
template<class T>
struct RBTreeNode {RBTreeNode(const T& data):_left(nullptr),_right(nullptr),_parent(nullptr),_data(data),_col(RED){}RBTreeNode* _left = nullptr;RBTreeNode* _right = nullptr;RBTreeNode* _parent = nullptr;T _data;col _col=RED;
};
template<class T,class Ptr,class Ref>
struct RBTreeIterator {typedef RBTreeNode<T> Node;typedef RBTreeIterator<T,Ptr,Ref> self;typedef RBTreeIterator<T,  T*,  T&> iterator;typedef RBTreeIterator<T, const T*, const T&> const_iterator;Node* _node;RBTreeIterator(const iterator& it):_node(it._node) {}RBTreeIterator(Node*node):_node(node){}Ref operator*() {return _node->_data;}Ptr operator->() {return &_node->_data;}bool operator==(const self&s) {return _node == s._node;}bool operator!=(const self& s) {return _node != s._node;}self& operator++() {if (_node == nullptr) {cout << "end()不能++" << endl;assert(false);}if (_node->_right) {//有右子树,那么这个节点之后就是它的右子树的中序的第一个节点,就是右子树中最左边的节点_node = _node->_right;while (_node->_left != nullptr)_node = _node->_left;return *this;}else {//没有右子树,直到找到孩子是父亲左子树的那个父亲节点Node* parent = _node->_parent;while (parent && _node != parent->_left) {parent = parent->_parent;_node = _node->_parent;}_node = parent;return *this;}}self& operator--() {if (_node->_left) {_node = _node->_left;while (_node->_right != nullptr)_node = _node->_right;return *this;}else {Node* parent = _node->_parent;while (parent && _node != parent->_right) {parent = parent->_parent;_node = _node->_parent;}_node = parent;return *this;}}
};template<class K,class V,class Keyofvalue>
class RBTree {typedef RBTreeNode<V> Node;
public:typedef RBTreeIterator<V,V*,V&> iterator;typedef RBTreeIterator<V,const V*,const V&> const_iterator;const_iterator begin()const {Node* cur = _root;while (cur && cur->_left)cur = cur->_left;return const_iterator(cur);}iterator begin() {Node* cur = _root;while (cur&&cur->_left)cur = cur->_left;return iterator(cur);}const_iterator end()const {return const_iterator(nullptr);}iterator end() {return iterator(nullptr);}iterator Find(const K& key) {Keyofvalue kov;Node* cur = _root;while (cur) {if (kov(cur->_data) < key) {cur = cur->_right;}else if (kov(cur->_data) > key) {cur = cur->_left;}else {return iterator(cur);}}return end();}pair<iterator,bool> insert(const V& data) {if (_root == nullptr) {_root = new Node(data);_root->_col = BLACK;return make_pair(iterator(_root),true);}Node* cur = _root;Node* parent = nullptr;Keyofvalue kov;while (cur) {if (kov(cur->_data) < kov(data)) {parent = cur;cur = cur->_right;}else if (kov(cur->_data) > kov(data)) {parent = cur;cur = cur->_left;}else return make_pair(iterator(cur),false);}cur = new Node(data);Node* ret = cur;if (kov(parent->_data) < kov(cur->_data)) {parent->_right = cur;cur->_parent = parent;}else {parent->_left = cur;cur->_parent = parent;}Node* c = cur;Node* p = cur->_parent;Node* g = p->_parent;Node* u = nullptr;while (p && p->_col == RED) {if (p == g->_left)u = g->_right;else u = g->_left;if (u == nullptr || u->_col == BLACK) {if (p == g->_left && c == p->_left) {RotateR(g);p->_col = BLACK;g->_col = RED;}else if (p == g->_right && c == p->_right) {RotateL(g);p->_col = BLACK;g->_col = RED;}else if (p == g->_left && c == p->_right) {RotateL(p);RotateR(g);c->_col = BLACK;g->_col = RED;}else if (p == g->_right && c == p->_left) {RotateR(p);RotateL(g);c->_col = BLACK;g->_col = RED;}else assert(false);break;}else if (u->_col == RED) {p->_col = BLACK;u->_col = BLACK;g->_col = RED;if (g == _root) {g->_col = BLACK;break;}else {c = g;p = c->_parent;g = p->_parent;}}else assert(false);}return make_pair(iterator(ret),true);}void RotateL(Node* parent) {Node* subR = parent->_right;Node* subRL = subR->_left;Node* ppnode = parent->_parent;if (subRL)subRL->_parent = parent;parent->_right = subRL;subR->_left = parent;parent->_parent = subR;if (parent == _root) {_root = subR;subR->_parent = nullptr;}else {subR->_parent = ppnode;if (ppnode->_left == parent)ppnode->_left = subR;else ppnode->_right = subR;}}void RotateR(Node* parent) {Node* subL = parent->_left;Node* subLR = subL->_right;Node* ppnode = parent->_parent;if (subLR)subLR->_parent = parent;parent->_left = subLR;subL->_right = parent;parent->_parent = subL;if (parent == _root) {_root = subL;subL->_parent = nullptr;}else {subL->_parent = ppnode;if (ppnode->_left == parent)ppnode->_left = subL;else ppnode->_right = subL;}}Node* getroot() {return _root;}private:Node* _root = nullptr;
};

MySet.h


namespace jxh {template<class T>class set {typedef RBTreeNode<T> Node;struct keyofvalue {const T& operator()(const T&key) {return key;}};void _inorder(Node* root) {if (root == nullptr)return;_inorder(root->_left);cout << root->_data << endl;_inorder(root->_right);}public:typedef typename RBTree<T, const T, keyofvalue>::iterator iterator;typedef typename RBTree<T, const T, keyofvalue>::const_iterator const_iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}const_iterator begin()const{return _t.begin();}const_iterator end()const{return _t.end();}pair<iterator, bool> insert(const T& key){return _t.insert(key);}iterator find(const T& key){return _t.find(key);}void inorder() {_inorder(_t.getroot());}private:RBTree<T,const T,keyofvalue> _t;};

MyMap.h

namespace jxh {template<class K,class V>class map {typedef RBTreeNode<pair<K,V>> Node;struct keyofvalue {const K& operator()(const pair<K,V>& kv) {return kv.first;}};void _inorder(Node* root) {if (root == nullptr)return;_inorder(root->_left);cout << root->_data.first<<" "<<root->_data.second << endl;_inorder(root->_right);}public://typedef RBTreeIterator<pair<K,V>> iterator;typedef typename RBTree<K, pair<const K, V>, keyofvalue>::iterator iterator;typedef typename RBTree<K, pair<const K, V>, keyofvalue>::const_iterator const_iterator;const_iterator begin()const {return _t.begin();}const_iterator end() const{return _t.end();}iterator begin() {return _t.begin();}iterator end() {return _t.end();}pair<iterator, bool> insert(const pair<K, V>& kv){return _t.insert(kv);}iterator find(const K& key){return _t.find(key);}V& operator[](const K& key){pair<iterator, bool> ret = insert(make_pair(key, V()));return ret.first->second;}void inorder() {_inorder(_t.getroot());}private:RBTree<K, pair<const K,V>, keyofvalue> _t;};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/302598.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

运行游戏找不到steam_api64.dll怎么办?steam_api64.dll丢失解决方法

steam_api64.dll是64位Windows操作系统上的一个动态链接库&#xff08;DLL&#xff09;文件&#xff0c;其大小通常在1.5-3.5 MB之间。这个文件对于Steam平台至关重要&#xff0c;因为它实现了游戏验证、更新等功能&#xff0c;并确保了用户拥有游戏的合法使用权。它通过提供一…

tensorflow.js 使用 opencv.js 将人脸特征点网格绘制与姿态估计线绘制结合起来,以获得更高的帧数

系列文章目录 如何在前端项目中使用opencv.js | opencv.js入门如何使用tensorflow.js实现面部特征点检测tensorflow.js 如何从 public 路径加载人脸特征点检测模型tensorflow.js 如何使用opencv.js通过面部特征点估算脸部姿态并绘制示意图 文章目录 系列文章目录前言一、实现步…

【Liunx】什么是make和makefile?

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …

蓝桥杯-油漆面积

代码及其解析:(AC80%&#xff09; 思路:是把平面划成单位边长为1&#xff08;面积也是1&#xff09;的方格。每读入一个矩形&#xff0c;就把它覆盖的方格标注为已覆盖&#xff1b;对所有矩形都这样处理&#xff0c;最后统计被覆盖的方格数量即可。编码极其简单&#xff0c;但…

让无刷电机转起来——换相(BLDC)

目录 1. 引言 2. 无刷电机换相原理 2.1 通电原理&#xff08;一相&#xff09; 2.2 换相原理&#xff08;三相&#xff09; 2.3 驱动电路 2.3.1 上下桥臂 2.3.2 六步换相 3. 结束语 1. 引言 前面博客&#xff0c;博主对于无刷电机的驱动方式与电路作了简要的介绍&#…

一键开启Scrum回顾会议的精彩时刻

其实回顾会议作为一个检视、反馈、改进环节&#xff0c;不仅在传统的瀑布管理模式中&#xff0c;还是在Scrum一类的敏捷管理流程中&#xff0c;都是非常重要的活动。一些团队认为它无法产生直接的价值&#xff0c;所以有意忽略了这个会议&#xff1b;一些团队在越来越多的回顾中…

DNS 各记录类型说明及规则

各记录类型使用目的 记录类型使用目的A 记录将域名指向一个 IP 地址。CNAME 记录将域名指向另一个域名&#xff0c;再由另一个域名提供 IP 地址。MX 记录设置邮箱&#xff0c;让邮箱能收到邮件。NS 记录将子域名交给其他 DNS 服务商解析。AAAA 记录将域名指向一个 IPv6 地址。…

Vite 项目中环境变量的配置和使用

Vite 项目中环境变量的声明 我们要在 Vite 项目中进行环境变量的声明&#xff0c;那么需要在项目的根目录下&#xff0c;新建 .env.[mode] 文件用于声明环境变量&#xff0c;如&#xff1a; .env.test 文件用于测试环境下项目全局变量的声明.env.dev 文件用于开发环境下项目全…

Linux初学(十七)防火墙

一、防火墙简介 1.1 防火墙的类别 安全产品 杀毒&#xff1a; 针对病毒&#xff0c;特征篡改系统中的文件杀毒软件针对处理病毒程序防火墙&#xff1a; 针对木马&#xff0c;特征系统窃取防火墙针对处理木马 防火墙分为两种 硬件防火墙软件防火墙 硬件防火墙 各个网络安全…

2024智能计算、大数据应用与信息科学国际会议(ICBDAIS2024)

2024智能计算、大数据应用与信息科学国际会议(ICBDAIS2024) 会议简介 智能计算、大数据应用与信息科学之间存在相互依存、相互促进的关系。智能计算和大数据应用的发展离不开信息科学的支持和推动&#xff0c;而信息科学的发展又需要智能计算和大数据应用的不断拓展和应用。智…

C++ 学习笔记

文章目录 【 字符串相关 】C 输入输出流strcpy_s() 字符串复制输出乱码 【 STL 】各个 STL 支持的常见方法 ? : 运算符switch case 运算符 switch(expression) {case constant-expression :statement(s);break; // 可选的case constant-expression :statement(s);break; //…

LT8712SX DP转两路HDMI2.0 MST 4K60hz,芯片方案

1. 特性 ⚫USB Type-C▪兼容USB上的VESA DisplayPort Alt模式 c型标准1.0b - DP Alt模式支持引脚分配C, D和E -符合USB供电规范3.1 -符合USB Type-C电缆和连接器 规范1.3 ▪内置三CC逻辑和PD控制器充电器和 正常的沟通 ▪支持UFP和DFP数据角色 ▪支持电源&#xff0c;接…

非关系型数据库--------------------Redis 群集模式

目录 一、集群原理 二、集群的作用 &#xff08;1&#xff09;数据分区 &#xff08;2&#xff09;高可用 Redis集群的作用和优势 三、Redis集群的数据分片 四、Redis集群的工作原理 五、搭建redis群集模式 5.1启用脚本配置集群 5.2修改集群配置 5.3启动redis节点 5…

Java 那些诗一般的 数据类型 (下篇)

本篇会加入个人的所谓鱼式疯言 ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. &#x1f92d;&#x1f92d;&#x1f92d;可能说的不是那么严谨.但小编初心是能让更多人能接…

通过 Spark SQL 和 DataFrame 操作表和多种内部数据源总结

文章目录 前言在Spark应用中使用Spark SQLSQL 表和视图内部表和外部表创建库和表创建视图查看元数据表缓存读取表数据 表和 DataFrame 的数据来源DataFrameReaderDataFrameWriterParquetJSONCSVAvroORCImagesBinary Files 总结 前言 本文将探讨 Spark 中 Spark SQL 接口是如何…

StockTrading AI小模型股票自动交易系统 转载

Stock-Trading StockTrading AI小模型股票自动交易系统 项目文档 Stock-Trading 语雀 项目展示 功能介绍 对接证券平台&#xff0c;实现股票自动化交易使用QuartZ定时任务调度&#xff0c;每日自动更新数据使用DL4J框架实现LSTM模型指导股票买入&#xff0c;采用T1短线交易策…

C/C++如何快速学习?少走3年弯路

于我而言&#xff0c;最开始学习就是 C&#xff0c;除了计算机专业&#xff0c;其他专业可能学习的第一门编程语言为 C 语言&#xff0c;还是谭浩强爷爷那本&#xff0c;当时想着有点 C 基础&#xff0c;无外乎就是 C 语言的升级版&#xff0c;于是开启了 C 的路程。 语言这个…

鸿蒙、如何使用@ohos.contact 接口,实现对联系人的增删查改功能

介绍 本示例使用ohos.contact 接口&#xff0c;实现了对联系人的增删查改功能。 效果预览 使用说明 1.点击 按钮&#xff0c;跳转添加联系人界面&#xff0c;输入联系人信息&#xff0c;点击 √&#xff0c;确认添加联系人&#xff0c;并返回首页&#xff1b; 2.点击联系人…

学习记录14-运算放大器2

目录 前言 一、理想放大器 二、虚断 二、虚短 虚短的两个使用条件 1.虚短概念 2.如果我们将运放的同相端和反相端颠倒会怎样呢&#xff1f; 总结 前言 主要讲述运算放大器的虚短虚断 一、理想放大器 如果没有基础或只是想简单了解&#xff0c;可以看我前一篇文章&am…

Jackson 2.x 系列【15】序列化器 JsonSerializer

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-jaskson-demo 文章目录 1. 概述2. 方法2.1 构造2.2 序列化2.3 其他 3. 实现类3.1 StdSerializer3.1.1 源…