MySQL进阶-关联查询优化

采用左外连接

下面开始 EXPLAIN 分析

EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

结论:type 有All  ,代表着全表扫描,效率较差

 添加索引优化

ALTER TABLE book ADD INDEX Y ( card); #【被驱动表】,可以避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

可以看到第二行的 type 变为了 ref,rows 也变成了优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以 右边是我们的关键点,一定需要建立索引 。  也就是left join 右边所关联的表的关联字段一定要建立索引

 只是对左边的表建立索引的话,是没有效果的,可以通过rows这一列看到,type表要读取的记录仍然是20条。

ALTER TABLE `type` ADD INDEX X (card); #【驱动表】,无法避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

把右边的表的索引删除,可以发现现在又要走全表扫描了 

DROP INDEX Y ON book;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

 采用内连接

删除先前的索引

drop index X on type;
drop index Y on book;(如果已经删除了可以不用再执行该操作)

换成 inner join(MySQL自动选择驱动表)

EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

 添加索引优化

向book表添加索引后,book自动成为被驱动表,提高了查询效率。

ALTER TABLE book ADD INDEX Y (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

如果新增了type表的索引,此时两个表都有索引,优化器会选择小数据量的表作为驱动表,用来驱动大表。

ALTER TABLE type ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

对于内连接来说,查询优化器可以决定谁作为驱动表,谁作为被驱动表出现的,接下来把type表的索引删了。可以看到有索引的book表又作为了被驱动表

DROP INDEX X ON `type`;
EXPLAIN SELECT SQL_NO_CACHE * FROM TYPE INNER JOIN book ON type.card=book.card;

 向type表里面添加索引,此时又变成了被驱动表了

ALTER TABLE `type` ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card=book.card;

join语句原理

join方式连接多个表,本质就是各个表之间数据的循环匹配。MySQL5.5版本之前,MySQL只支持一种表间关联方式,就是嵌套循环(Nested Loop Join)。如果关联表的数据量很大,则join关联的执行时间会很长。在MySQL5.5以后的版本中,MySQL通过引入BNLJ算法来优化嵌套执行。

驱动表和被驱动表

驱动表就是主表,被驱动表就是从表、非驱动表。

  • 对于内连接来说:

A一定是驱动表吗?不一定,优化器会根据你查询语句做优化,决定先查哪张表。先查询的那张表就是驱动表,反之就是被驱动表。通过explain关键字可以查看。

SELECT * FROM A JOIN B ON ...
  • 对于外连接来说:
SELECT * FROM A LEFT JOIN B ON ...
# 或
SELECT * FROM B RIGHT JOIN A ON ... 

Simple Nested-Loop Join (简单嵌套循环连接)

算法相当简单,从表A中取出一条数据1,遍历表B,将匹配到的数据放到result.. 以此类推,驱动表A中的每一条记录与被驱动表B的记录进行判断:

可以看到这种方式效率是非常低的,以上述表A数据100条,表B数据1000条计算,则A*B=10万次。开销统计如下。当然mysql肯定不会这么粗暴的去进行表的连接,所以就出现了后面的两种对Nested-Loop Join优化算法。

Index Nested-Loop Join (索引嵌套循环连接)

Index Nested-Loop Join其优化的思路主要是为了减少内存表数据的匹配次数,所以要求被驱动表上必须有索引才行。通过外层表匹配条件直接与内层表索引进行匹配,避免和内存表的每条记录去进行比较,这样极大的减少了对内存表的匹配次数。就是利用索引来提高匹配效率

 

驱动表中的每条记录通过被驱动表的索引进行访问,因为索引查询的成本是比较固定的,故mysql优化器都倾向于使用记录数少的表作为驱动表(外表)。如果被驱动表加索引,效率是非常高的,但如果索引不是主键索引,所以还得进行一次回表查询。相比,被驱动表的索引是主键索引,效率会更高。

 Block Nested-Loop Join(块嵌套循环连接)

 之前是将驱动表逐条与非驱动表的记录进行匹配,现在是引入join buffer缓冲区,将驱动表的记录缓冲到缓冲区,然后进行批量匹配,而不是逐条匹配。

Join小结

1、整体效率比较:INLJ > BNLJ > SNLJ

2、永远用小结果集驱动大结果集(其本质就是减少外层循环的数据数量)(小的度量单位指的是表行数 * 每行大小)

select t1.b,t2.* from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=100; # 推荐
select t1.b,t2.* from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=100; # 不推荐

3、为被驱动表匹配的条件增加索引(减少内存表的循环匹配次数)

4、增大join buffer size的大小(一次索引的数据越多,那么内层包的扫描次数就越少)

5、减少驱动表不必要的字段查询(字段越少,join buffer所缓存的数据就越多

Hash Join

从MySQL的8.0.20版本开始将废弃BNLJ,因为从MySQL8.0.18版本开始就加入了hash join默认都会使用hash join

  • Nested Loop:

    对于被连接的数据子集较小的情况,Nested Loop是个较好的选择。

  • Hash Join是做大数据集连接时的常用方式,优化器使用两个表中较小(相对较小)的表利用Join Key在内存中建立散列表,然后扫描较大的表并探测散列表,找出与Hash表匹配的行。

    • 这种方式适合于较小的表完全可以放于内存中的情况,这样总成本就是访问两个表的成本之和。

    • 在表很大的情况下并不能完全放入内存,这时优化器会将它分割成若干不同的分区,不能放入内存的部分就把该分区写入磁盘的临时段,此时要求有较大的临时段从而尽量提高I/O的性能。

    • 它能够很好的工作于没有索引的大表和并行查询的环境中,并提供最好的性能。大多数人都说它是Join的重型升降机。Hash Join只能应用于等值连接(如WHERE A.COL1 = B.COL2),这是由Hash的特点决定的。

 

小结

  • 保证被驱动表的JOIN字段已经创建了索引

  • 需要JOIN 的字段,数据类型保持绝对一致

  • LEFT JOIN 时,选择小表作为驱动表, 大表作为被驱动表 。减少外层循环的次数。

  • INNER JOIN 时,MySQL会自动将 小结果集的表选为驱动表 。选择相信MySQL优化策略。

  • 能够直接多表关联的尽量直接关联,不用子查询。(减少查询的趟数)

  • 不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用 JOIN 来代替子查询。

  • 衍生表建不了索引

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/30365.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大模型gpt结合drawio绘制流程图

draw下载地址 根据不同操作系统选择不同的安装 截图给gpt 并让他生成drawio格式的&#xff0c;选上推理 在本地将生成的内容保存为xml格式 使用drawio打开 保存的xml文件 只能说效果一般。

2025-03-08 学习记录--C/C++-C 语言 判断一个数是否是完全平方数

C 语言 判断一个数是否是完全平方数 使用 sqrt 函数计算平方根&#xff0c;然后判断平方根的整数部分是否与原数相等。 #include <stdio.h> #include <math.h>int isPerfectSquare(int num) {if (num < 0) {return 0; // 负数不是完全平方数}int sqrtNum (int)…

Java高频面试之集合-07

hello啊&#xff0c;各位观众姥爷们&#xff01;&#xff01;&#xff01;本baby今天来报道了&#xff01;哈哈哈哈哈嗝&#x1f436; 面试官&#xff1a;ArrayList 和 Vector 的区别是什么&#xff1f; ArrayList 与 Vector 的区别详解 ArrayList 和 Vector 都是 Java 中基于…

《原型链的故事:JavaScript 对象模型的秘密》

原型链&#xff08;Prototype Chain&#xff09; 是 JavaScript 中实现继承的核心机制。每个对象都有一个内部属性 [[Prototype]]&#xff08;可以通过 __proto__ 访问&#xff09;&#xff0c;指向其原型对象。每个对象都有一个原型&#xff0c; 原型本身也是一个对象&#xf…

第11章 web应用程序安全(网络安全防御实战--蓝军武器库)

网络安全防御实战--蓝军武器库是2020年出版的&#xff0c;已经过去3年时间了&#xff0c;最近利用闲暇时间&#xff0c;抓紧吸收&#xff0c;总的来说&#xff0c;第11章开始学习利用web应用程序安全&#xff0c;主要讲信息收集、dns以及burpsuite&#xff0c;现在的资产测绘也…

【redis】全局命令set、get、keys

生产环境 未来在工作中会涉及到的几个环境&#xff1a; 办公环境&#xff08;入职后&#xff0c;公司给你发个电脑&#xff09;开发环境 有的时候&#xff0c;开发环境和办公环境是一个&#xff08;一般做前端和做客户端&#xff09;有的时候&#xff0c;开发环境是一个单独的…

Paper Reading | AI 数据库融合经典论文回顾

人工智能&#xff08;AI&#xff09;和数据库&#xff08;DB&#xff09;在过去的50年里得到了广泛的研究&#xff0c;随着数据库近年来的不断发展&#xff0c;数据库开始与人工智能结合&#xff0c;数据库和人工智能&#xff08;AI&#xff09;可以相互促进。一方面&#xff0…

Linux上位机开发(开篇)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 传统的上位机开发&#xff0c;一般都是默认pc软件开发。既然是pc软件&#xff0c;一般来说都是基于windows平台开发。开放的框架&#xff0c;无非是…

最长递增子序列--蓝桥oj3046拍照

题目链接 arr[] 1700 1701 1702 1703 1704 1705 dp1[] 1 2 3 4 5 6 dp2[] 6 5 4 3 2 1 sum[]dp1[]dp2[] sum[] 7 7 7 7 7 7 7是最大的倒叙和正序的…

upload-labs文件上传

第一关 上传一个1.jpg的文件&#xff0c;在里面写好一句webshell 保留一个数据包&#xff0c;将其中截获的1.jpg改为1.php后重新发送 可以看到&#xff0c;已经成功上传 第二关 写一个webshell如图&#xff0c;为2.php 第二关在过滤tpye的属性&#xff0c;在上传2.php后使用b…

LeetCode1137 第N个泰波那契数

泰波那契数列求解&#xff1a;从递归到迭代的优化之路 在算法的世界里&#xff0c;数列问题常常是我们锻炼思维、提升编程能力的重要途径。今天&#xff0c;让我们一同深入探讨泰波那契数列这一有趣的话题。 泰波那契数列的定义 泰波那契序列 Tn 有着独特的定义方式&#xf…

OpenCV 拆分、合并图像通道方法及复现

视频讲解 OpenCV 拆分、合并图像通道方法及复现 环境准备&#xff1a;安装 OpenCV 库&#xff08;pip install opencv-python&#xff09; 内容&#xff1a; 1. 读取任意图片&#xff08;支持 jpg/png 等格式&#xff09; 2. 使用 split () 函数拆解成 3 个单色通道&#xf…

【ArcGIS】地理坐标系

文章目录 一、坐标系理论体系深度解析1.1 地球形态的数学表达演进史1.1.1 地球曲率的认知变化1.1.2 参考椭球体参数对比表 1.2 地理坐标系的三维密码1.2.1 经纬度的本质1.2.2 大地基准面&#xff08;Datum&#xff09;的奥秘 1.3 投影坐标系&#xff1a;平面世界的诞生1.3.1 投…

登录固定账号和密码:

接口文档 【apifox】面试宝典 个人中心-保存用户数据信息 - 教学练测项目-面试宝典-鸿蒙 登录固定账号和密码&#xff1a; 账号&#xff1a;hmheima 密码&#xff1a;Hmheima%123 UI设计稿 【腾讯 CoDesign】面试宝典 CoDesign - 腾讯自研设计协作平台 访问密码&#xff1…

软件测试的基础入门(二)

文章目录 一、软件&#xff08;开发&#xff09;的生命周期什么是生命周期软件&#xff08;开发&#xff09;的生命周期需求分析计划设计编码测试运行维护 二、常见的开发模型瀑布模型流程优点缺点适应的场景 螺旋模型流程优点缺点适应的场景 增量模型和迭代模型流程适应的场景…

大模型架构记录2

一 应用场景 1.1 prompt 示例 1.2 自己搭建一个UI界面&#xff0c;调用接口 可以选用不同的模型&#xff0c;需要对应的API KEY 二 Agent 使用 2.1 构建GPT

PQL查询和监控各类中间件

1 prometheus的PQL查询 1.1 Metrics数据介绍 prometheus监控中采集过来的数据统一称为Metrics数据&#xff0c;其并不是代表具体的数据格式&#xff0c;而是一种统计度量计算单位当需要为某个系统或者某个服务做监控时&#xff0c;就需要使用到 metrics prometheus支持的met…

maven学习

Maven 概述 Maven 是一个基于 POM&#xff08;Project Object Model&#xff0c;项目对象模型&#xff09; 的项目管理和构建工具&#xff0c;主要用于 Java 项目。它通过一个中央信息管理模型&#xff08;POM 文件&#xff09;来管理项目的构建、依赖、文档、报告等。Maven 的…

STM32-I2C通信外设

目录 一&#xff1a;I2C外设简介 二&#xff1a;I2C外设数据收发 三&#xff1a;I2C的复用端口 四&#xff1a;主机发送和接收 五&#xff1a;硬件I2C读写MPU6050 相关函数&#xff1a; 1.I2C_ GenerateSTART 2.I2C_ GenerateSTOP 3.I2C_ AcknowledgeConfig 4.I2C…

c语言程序设计--(数据的存储)冲刺考研复试面试简答题,看看我是怎么回答的吧!!!!!

目录 1、整型在内存中的存储是怎样的&#xff1f; 2、原码反码补码的计算方式是什么&#xff1f; 3、对于整形数据在内存中存的都是二进制补码是为什么&#xff1f; 2、什么是大端小端存储&#xff1f; 3、为什么要有大端和小端的存储方式呢&#xff1f; 1、整型在内存中的…