多模态 ——LLaVA 集成先进图像理解与自然语言交互GPT-4的大模型

概述

提出了一种大型模型 LLaVA,它使用 GPT-4 生成多模态语言图像指令跟随数据,并利用该数据将视觉和语言理解融为一体。初步实验表明,LLaVA 展示了出色的多模态聊天能力,在合成多模态指令上的表现优于 GPT-4。 在科学质量保证中进行微调时,LLaVA 和 GPT-4 的协同作用实现了新的一流准确性。

论文链接:http://arxiv.org/abs/2304.08485
代码链接:https://github.com/haotian-liu/LLaVA
demo链接:https://llava-vl.github.io/

导言

本文的重点是开发结合视觉和语言的人工智能助手。在传统模型中,每项任务都是独立解决的,语言只能描述图像内容。然而,随着大规模语言模型(LLM)的发展,语言能够指导各种各样的任务。本文介绍了一种名为视觉指令调整的新技术,该技术可生成视觉数据来构建大规模多模态模型(LMM)。生成的数据用于微调 LMM,并构建通用的指令跟随视觉代理。 使用 GPT-4 在科学 QA 多模态推理数据集上实现卓越性能。

相关研究

本文将重点讨论如何构建能够遵从视觉和语言指令的代理。现有工作大致可分为端到端训练模型和通过 LangChain 等系统调整不同模型的模型。我们还将自然语言处理(NLP)研究中提出的 LLM 指令调整方法应用于视觉任务,目的是建立一个通用的指令遵循视觉代理。我们认为,这将提高对指令的有效理解和概括,并可能适用于新的多模态任务。

GPT 辅助生成视觉指示数据

虽然社会上公开的图像和文本数据激增,但多模态教学数据却很有限。为了应对这一挑战,有人提议使用 ChatGPT/GPT-4 从大量图像对数据中收集多模态教学数据。

我们提出了一种使用 GPT-4 生成基于图像-文本对的自然问题的方法。由于通常的扩展方法缺乏多样性和深度推理,因此提出了一种方法,利用纯语言 GPT-4 和 ChatGPT 作为教师,生成遵循视觉指令的数据。使用符号表示法对图像进行编码,生成不同类型的指令遵循数据。研究表明,GPT-4 可以提供高质量的指令跟随数据,而且比普通的数据增强方法效果更好。

视觉指令的调整

模型架构

主要目标是有效利用预训练 LLM 和视觉模型的能力。 网络架构如图 1 所示。

LaMA(Large Language Model for Instructions Following)即大型语言模型fφ(⋅),由参数 φ 参数化。这是因为它在仅针对开源语言的指令调整工作中被证明是有效的。ViT-L/14 提供视觉特征 Zv=g(Xv),并使用可训练的投影矩阵 W 将图像特征转换为语言嵌入标记 Hq。这确保了图像和语言模型具有相同的维度。

因此,从图像中得出的视觉标记 Hv 过程序列既轻便又高效,可以快速迭代以数据为中心的实验。其他模型,如 Flamingo’s Gate Cross Attention 和 BLIP-2’s Q-former 或 SAM,都提供了对象级功能。未来的研究仍将探索更有效、更复杂的架构设计。

模型训练

对于每幅图像,对话数据由若干个轮次(X1q、X1a、…)组成。XTq, XTa)。其中 T 代表回合总数。所有助手的回答都会被汇总,每个回合中的指令都会被整理为 Xtinstruct。这种方法产生的多模态指令统一格式如表 2 所示。利用原始的自回归训练目标,对预测标记进行 LLM 指令调整。具体来说,就是计算在长度为 L 的序列中生成目标答案 Xa的概率。在训练模型时,我们考虑了两阶段的指令调整程序。其中,θ 是可训练参数,Xinstruct < i 和 Xa < i 分别是当前预测标记 xi之前所有回合中的指令和答案标记。在条件语句中,明确添加了 Xv,以强调图像是以所有答案为基础的,并且跳过了 Xsystem 消息和之前的所有 以提高可读性。

该方法也包括两个阶段。在第一阶段,从 CC3M 中选取 595K 对图像-文本,并使用简单的扩展方法将其转换为符合指令的数据,以便将其视为单轮对话。在此,随机抽样的问题被用作图像的指令,而原始标题则被训练为预期答案。在这一阶段,视觉编码器和 LLM 权重是固定的,只有投影矩阵 W 用于最大化可能性。

第二步,固定视觉编码器的权重,更新 LLaVA 的投影层和 LLM 的权重。换句话说,可训练参数就是投影矩阵 W 和 φ。聊天机器人的训练使用收集到的语言图像指令跟踪数据,并对多转和单转回答进行均匀采样;在 ScienceQA 基准中,问题以自然语言或图像的形式提供上下文,助手负责推理过程,推理过程包括在 ScienceQA 基准中,问题以自然语言或图像的形式提供上下文,助手负责推理过程,从多个选项中选择一个答案

安装与部署

获取代码:

git clone https://github.com/haotian-liu/LLaVA.git
cd LLaVA

安装软件包:

conda create -n llava python=3.10 -y
conda activate llava
python -mpip install --upgrade pip  # enable PEP 660 support
pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu117
pip install -e .
pip uninstall bitsandbytes

如果想在本地启动 Gradio ui 演示,请依次运行以下命令。如果计划启动多个模型工作器以比较不同检查点之间的差异,只需要一次启动控制器和Web服务器。
在这里插入图片描述

启动项目:

python -m llava.serve.controller --host 0.0.0.0 --port 10000

试验

多模态聊天机器人

研究人员开发了一种名为 LLaVA 的新型多模态人工智能模型,并制作了一个聊天机器人演示,展示了它的图像理解和对话能力;LLaVA 仅在 80,000 张图像上进行了训练,并显示出与 GPT-4 相似的推理结果。这表明,LLaVA 可以遵循指令、理解场景并做出适当的回应。其他模型(BLIP-2 和 OpenFlamingo)则侧重于描述图像,对指令的反应有限。定量评估还比较了 LLaVA 和 GPT-4 在 COCO 验证集所选图像上的答题能力,试图从 GPT-4 的评分中了解 LLaVA 的表现。具体结果见表 3。

对说明的调整使模型遵循用户说明的能力提高了 50 多个百分点。增加详细说明和复杂推理问题后,模型的整体性能提高了 7 个百分点。模型在会话问题上的表现也有所提高,这表明推理能力与会话能力相辅相成。最后,将三种数据类型结合在一起取得了 85.1% 的最佳性能。该评估方案为全面评估和了解大型多模态模型的功能提供了一个基准。

在研究中,使用新适配器的 LLaVA 在 ScienceQA 数据集上达到了 90.92% 的高准确率,而 GPT-4 的结果为 82.69%。与 LLaVA 和 GPT-4 相结合,则能保持 90.97% 的高准确率。此外,还提出了一种通过再次提示 GPT-4 来生成唯一答案的方案,从而达到了 92.53% 的新的最高准确率。这项研究为利用 LLM 的模型组合提供了新的可能性。通过比较不同条件下的模型性能,我们对科学质量保证任务的适当模型配置有了更好的了解。

结论

本文展示了使用 GPT-4 语言模型进行视觉指令调整的有效性。本文引入了一个新的数据生成管道,以生成遵循语言和图像指令的数据,并在此基础上训练多模态模型 LLaVA。通过微调,ScienceQA 实现了新的 SoTA 准确率,多模态聊天数据实现了卓越的视觉聊天体验。未来的前景包括在更大的数据规模上进行预训练,并与其他视觉模型连接。这有望实现新的功能并提高性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/305534.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu 安装Java、Git、maven、Jenkins等持续集成环境

Ubuntu 持续集成 安装OpenJdk 查看所有可安装的 JDK 版本 apt list OpenJDK\*使用 apt 安装 JDK&#xff08;以 11为例&#xff09;,最好是用11&#xff0c;java8对应的jenkins会有兼容问题。 sudo apt install openjdk-11-jdk openjdk-11-jre安装成功后&#xff0c;可以使用以…

【JavaEE初阶系列】——网络编程 UDP客户端/服务器 程序实现

目录 &#x1f6a9;UDP和TCP之间的区别 &#x1f388;TCP是有连接的 UDP是无连接的 &#x1f388;TCP是可靠传输 UDP是不可靠传输 &#x1f388;TCP是面向字节流 UDP是面向数据报 &#x1f388;TCP和UDP是全双工 &#x1f469;&#x1f3fb;‍&#x1f4bb;UDP的socket ap…

kubekey 离线安装harbor、k8s、kubesphere

目录 参考文献 了解kubekey 英文和中文 前提条件 部署准备 下载kubukey 离线包配置和制作 配置离线包 制作离线包 离线安装集群 复制KubeKey 和制品 artifact到离线机器 创建初始换、安装配置文件 安装镜像仓库harbor 初始化harbor 项目 修改配置文件 安装k8s集…

ios包上架系列 一、打包机Flutter项目环境配置

打包的时候一定要断开网络&#xff0c;上线包名只能在打包机配置 1、Xcode 需要从其它电脑空投 版本号&#xff1a;14.3.1 升级到Xcode14.3后发现,从这个版本开始,苹果从Xcode中移除了ARC相关的库,会导致fluter项目下的原生工程使用Xcode编译原生代码没 有问题, 但是flutter项…

Python(1):认识Python并且了解一些简单函数

文章目录 一、Python的优势及其使用场景二、Python环境的安装三、Python中的变量及其命名四、Python中的注释五、一些简单常见的函数和认识ASCII表六、Python导入模块的方式 一、Python的优势及其使用场景 优点&#xff1a; 开发效率高&#xff1a;Python具有非常强大的第三方…

MySQL 全文检索

不是所有的数据表都支持全文检索 MySQL支持多种底层数据库引擎&#xff0c;但是并非所有的引擎支持全文检索 &#xff0c;目前最常用引擎是是MyISAM和InnoDB&#xff1b;前者支持全文检索&#xff0c;后者不支持。 booolean模式操作符 操作符含义必须有-必须不包含>包含对应…

《战神4》和《战神5》有什么联系吗 苹果电脑如何运行《战神4》苹果电脑玩战神 Mac玩游戏 战神5攻略 crossover激活码

《战神4》&#xff08;God of War 2018&#xff09;和《战神5》&#xff08;God of War: Ragnark&#xff09;是一对引人注目的游戏作品&#xff0c;它们不仅在游戏界引起了广泛的关注&#xff0c;也给玩家带来了深入探索北欧神话世界的机会。这两部游戏之间的联系不仅体现在剧…

【面试八股总结】排序算法(一)

参考资料 &#xff1a;阿秀 一、冒泡排序 冒泡排序就是把小的元素往前交换或者把大的元素往后交换&#xff0c;比较相邻的两个元素&#xff0c;交换也发生在这两个元素之间。具体步骤&#xff1a; 比较相邻的元素。如果第一个比第二个大&#xff0c;就交换他们两个。对每一对…

spring快速搭建聊天AI

官网url: https://spring.io/projects/spring-ai 本文演示的是open AI 1创建java项目 2.拿到AI的key&#xff08;没有的话可以去淘宝花几块钱买一个&#xff09; //YOUR_API_KEY写你自己的open AI的key spring.ai.openai.api-keyYOUR_API_KEY spring.ai.openai.chat.options.…

学习云计算HCIE选择誉天有什么优势?

誉天云计算课程优势实战性强 课程注重实践操作&#xff0c;通过实际案例和实验操作&#xff0c;让学员深入了解云计算的应用场景和实际操作技能。课程内容全面 涵盖所有云计算涉及的IT基础知识、服务器、存储、网络等方面的基础知识&#xff0c;开源操作系统Linux&#xff0c;开…

反序列化漏洞笔记

1 PHP 序列化基础概念 1.1 什么是序列化 序列化可以实现将对象压缩并格式化&#xff0c;方便数据的传输和存储。 为什么要序列化&#xff1f; PHP 文件在执行结束时会把对象销毁&#xff0c;如果下次要引用这个对象的话就很麻烦&#xff0c;所以就有了对象序列化&#xff0…

git 删除本地分支 删除远程仓库中的分支

语法&#xff1a; 删除本地分支 git branch -D <分支名>删除远程分支 git push <remote名称> <分支名> --delete 示例&#xff1a; 删除本地分支 git branch -D feature/test_listview删除远程分支 git push origin feature/test_listview --delete 两个…

Day36|贪心算法part05:435. 无重叠区间、763.划分字母区间、56. 合并区间

435. 无重叠区间 有了上题射气球的因子&#xff0c;这题也就有思路了&#xff0c;反正无脑排序就行了&#xff1a; 首先将所有区间按照end的大小从小到大排序&#xff1b;选取最早end为起始x_end遍历所有区间&#xff0c;如果该区间的start比end大&#xff08;可重叠&#xf…

利用Python实现可视化交互界面:Dash

Dash是一个低代码数据框架&#xff0c;用Python实现可视化交互界面&#xff0c;不用写Javascript&#xff0c;开源&#xff0c;支持回调、HTML组件等功能。 安装 pip install dash使用 # Import packages from dash import Dash, html, dash_table, dcc, callback, Output, …

基于 WebRTC 实现的点对点文件传输和音视频聊天工具 | 开源日报 No.220

tl-open-source/tl-rtc-file Stars: 2.1k License: MIT tl-rtc-file 是一个基于 WebRTC 的文件传输工具&#xff0c;支持跨终端、不限平台的在线文件传输。它提供了丰富的功能和特性&#xff1a; 分片传输&#xff1a;支持大型文件的分片传输&#xff0c;确保高效稳定地完成上…

使用htmlentities()和nl2br()将文本数据正确显示到前台

问题&#xff1a; 在后台textarea里编辑了有一串字符串&#xff0c;虽然在textarea里编辑是有换行效果的&#xff0c;但是数据获取到就只是\n&#xff0c;前端是不认识这个的&#xff0c;正确输出到前台的换行只能是<br/>。 $str "ABCDEFGHIJKLMNOPQ"; echo…

【opencv】示例-fback.cpp 使用OpenCV库来实现密集光流算法

// 引入OpenCV库中有关视频跟踪的头文件 #include "opencv2/video/tracking.hpp" // 引入OpenCV库中有关图像处理的头文件 #include "opencv2/imgproc.hpp" // 引入OpenCV库中有关视频输入的头文件 #include "opencv2/videoio.hpp" // 引入OpenC…

DVWA -XSS(Reflected)-通关教程-完结

DVWA -XSS&#xff08;Reflected&#xff09;-通关教程-完结 XSS&#xff08;Reflected&#xff09; ​ XSS 攻击全称跨站脚本攻击。是指用户在 Web 页面中提交恶意脚本&#xff0c;从而使浏览包含恶意脚本的页面的用户在不知情的情况下执行该脚本&#xff0c;导致被攻击的行为…

Elasticsearch部署安装

环境准备 Anolis OS 8 Firewall关闭状态&#xff0c;端口自行处理 Elasticsearch&#xff1a;7.16.1&#xff08;该版本需要jdk11&#xff09; JDK&#xff1a;11.0.19 JDK # 解压 tar -zxvf jdk-11.0.19_linux-x64_bin.tar.gz# 编辑/etc/profile vim /etc/profile# 加入如下…

动态规划-入门三道题

1137. 第 N 个泰波那契数 题目描述&#xff1a; 状态表示: dp[i]表示第i个泰波那契数。 状态转移方程&#xff1a; dp[i]dp[i-3]dp[i-2]dp[i-1]。 初始化: 动态规划问题的初始化就是为了去避免初始情况下的越界问题。这里就对dp[0]0,dp[1]1,dp[2]1这样进行初始化即可&#xf…