LeetCode-1143. 最长公共子序列【字符串 动态规划】
- 题目描述:
- 解题思路一:动规五部曲
- 解题思路二:1维DP
- 解题思路三:0
题目描述:
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。
示例 2:
输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。
示例 3:
输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0 。
提示:
1 <= text1.length, text2.length <= 1000
text1 和 text2 仅由小写英文字符组成。
解题思路一:动规五部曲
- 确定dp数组(dp table)以及下标的含义
dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
有同学会问:为什么要定义长度为[0, i - 1]的字符串text1,定义为长度为[0, i]的字符串text1不香么?
这样定义是为了后面代码实现方便,如果非要定义为长度为[0, i]的字符串text1也可以,我在 动态规划:718. 最长重复子数组 (opens new window)中的「拓展」里 详细讲解了区别所在,其实就是简化了dp数组第一行和第一列的初始化逻辑。
- 确定递推公式
主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同
如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
- dp数组如何初始化
先看看dp[i][0]应该是多少呢?
test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
同理dp[0][j]也是0。
其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。
-
确定遍历顺序
从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:
那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。 -
举例推导dp数组
以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:
最后红框dp[text1.size()][text2.size()]为最终结果
class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:# 创建一个二维数组 dp,用于存储最长公共子序列的长度dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]# 遍历 text1 和 text2,填充 dp 数组for i in range(1, len(text1) + 1):for j in range(1, len(text2) + 1):if text1[i - 1] == text2[j - 1]:# 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一dp[i][j] = dp[i - 1][j - 1] + 1else:# 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])# 返回最长公共子序列的长度return dp[len(text1)][len(text2)]# 同意
class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:m, n = len(text1), len(text2)dp = [[0] * (n+1) for _ in range(m+1)]for i in range(1, m+1):for j in range(1, n+1):if text1[i-1] != text2[j-1]:dp[i][j] = max(dp[i-1][j], dp[i][j-1])else:dp[i][j] = dp[i-1][j-1] + 1return dp[-1][-1]
时间复杂度:O(nm)
空间复杂度:O(nm)
解题思路二:1维DP
class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:m, n = len(text1), len(text2)dp = [0] * (n + 1) # 初始化一维DP数组for i in range(1, m + 1):prev = 0 # 保存上一个位置的最长公共子序列长度for j in range(1, n + 1):curr = dp[j] # 保存当前位置的最长公共子序列长度if text1[i - 1] == text2[j - 1]:# 如果当前字符相等,则最长公共子序列长度加一dp[j] = prev + 1else:# 如果当前字符不相等,则选择保留前一个位置的最长公共子序列长度中的较大值dp[j] = max(dp[j], dp[j - 1])prev = curr # 更新上一个位置的最长公共子序列长度return dp[n] # 返回最后一个位置的最长公共子序列长度作为结果
时间复杂度:O(nm)
空间复杂度:O(n)
解题思路三:0
时间复杂度:O(n)
空间复杂度:O(n)