Day:005 | Python爬虫:高效数据抓取的编程技术(爬虫效率)

爬虫之多线程-了解

单线程爬虫的问题

  • 因为爬虫多为IO密集型的程序,而IO处理速度并不是很快,因此速度不会太快
  • 如果IO卡顿,直接影响速度

解决方案
考虑使用多线程、多进程

原理:

爬虫使用多线程来处理网络请求,使用线程来处理URL队列中的url,然后将url返回的结果保存在另一个队列中,其它线程在读取这个队列中的数据,然后写到文件中 。

主要组成部分

URL队列和结果队列

将将要爬去的url放在一个队列中,这里使用标准库Queue。访问url后的结果保存在结果队列中

初始化一个URL队列 

from queue import Queue
urls_queue = Queue()
out_queue = Queue()

 类包装

使用多个线程,不停的取URL队列中的url,并进行处理:

import threading
class ThreadCrawl(threading.Thread):def __init__(self, queue, out_queue):threading.Thread.__init__(self)self.queue = queueself.out_queue = out_queuedef run(self):while True:item = self.queue.get()

        如果队列为空,线程就会被阻塞,直到队列不为空。处理队列中的一条数据后,就需要通知队列已经处理完该条数据

函数包装

from threading import Thread
def func(args)pass
if __name__ == '__main__':info_html = Queue()t1 = Thread(target=func,args=
(info_html,))

线程池 

# 简单往队列中传输线程数
import threading
import time
import queueclass Threadingpool():def __init__(self,max_num = 10):self.queue = queue.Queue(max_num)for i in range(max_num):self.queue.put(threading.Thread)def getthreading(self):return self.queue.get()def addthreading(self):self.queue.put(threading.Thread)
def func(p,i):time.sleep(1)print(i)p.addthreading()
if __name__ == "__main__":p = Threadingpool()for i in range(20):thread = p.getthreading()t = thread(target = func, args =
(p,i))t.start()
Queue模块中的常用方法 

Python的Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步

  • Queue.qsize() 返回队列的大小
  • Queue.empty() 如果队列为空,返回True,反之False
  • Queue.full() 如果队列满了,返回True,反之False
  • Queue.full 与 maxsize 大小对应
  • Queue.get([block[, timeout]])获取队列,timeout等待时间
  • Queue.get_nowait() 相当Queue.get(False)
  • Queue.put(item) 写入队列,timeout等待时间
  • Queue.put_nowait(item) 相当Queue.put(item, False)
  • Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一
  • 个信号
  • Queue.join() 实际上意味着等到队列为空,再执行别的操作

爬虫之多进程-了解 

multiprocessing是python的多进程管理包,和threading.Thread类似

multiprocessing模块

multiprocessing模块可以让程序员在给定的机器上充分的利用CPU

在multiprocessing中,通过创建Process对象生成进程,然后调用它的start()方法

from multiprocessing import Process
def func(name):print('hello', name)
if __name__ == "__main__":p = Process(target=func,args=('sxt',))p.start()p.join()  # 等待进程执行完毕
Manager类,实现数据共享

在使用并发设计的时候最好尽可能的避免共享数据,尤其是在使用多进程的时候。 如果你真有需要 要共享数据,可以使用由Manager()返回的manager提供list, dict, Namespace, Lock, RLock,
Semaphore, BoundedSemaphore, Condition, Event, Barrier,Queue, Value and Array类型的支持

from multiprocessing import
Process,Manager,Lock
def print_num(info_queue,l,lo):with lo:for n in l:info_queue.put(n)
def updata_num(info_queue,lo):with lo:while not info_queue.empty():print(info_queue.get())if __name__ == '__main__':manager = Manager()into_html = manager.Queue()lock = Lock()a = [1, 2, 3, 4, 5]b = [11, 12, 13, 14, 15]p1 = Process(target=print_num,args=
(into_html,a,lock))p1.start()p2 = Process(target=print_num,args=
(into_html,b,lock))p2.start()p3 = Process(target=updata_num,args=
(into_html,lock))p3.start()p1.join()p2.join()p3.join()
from multiprocessing import Process
from multiprocessing import Manager
import time
from fake_useragent import UserAgent
import requests
from time import sleepdef spider(url_queue):while not url_queue.empty():try:url = url_queue.get(timeout = 1)# headers = {'UserAgent':UserAgent().chrome}print(url)# resp =
requests.get(url,headers = headers)# 处理响应结果# for d in
resp.json().get('data'):#     print(f'tid:{d.get("tid")}
topic:{d.get("topicName")} content:
{d.get("content")}')sleep(1)# if resp.status_code == 200:#     print(f'成功获取第{i}页数据')except Exception as e:print(e)
if __name__ == '__main__':url_queue = Manager().Queue()for i in range(1,11):url =
f'https://www.hupu.com/home/v1/news?pageNo=
{i}&pageSize=50'url_queue.put(url)all_process = []for i in range(3):p1 = Process(target=spider,args=
(url_queue,))p1.start()all_process.append(p1)[p.join() for p in all_process]  
 进程池的使用
  • 进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
  • 进程池中有两个方法:
    • apply同步执行-串行
    • apply_async异步执行-并行
from multiprocessing import Pool,Manager
def print_num(info_queue,l):for n in l:info_queue.put(n)
def updata_num(info_queue):while not info_queue.empty():print(info_queue.get())
if __name__ == '__main__':html_queue =Manager().Queue()a=[11,12,13,14,15]b=[1,2,3,4,5]pool = Pool(3)
pool.apply_async(func=print_num,args=
(html_queue,a))pool.apply_async(func=print_num,args=
(html_queue,b))pool.apply_async(func=updata_num,args=
(html_queue,))pool.close() #这里join一定是在close之后,且必须要加join,否则主进程不等待创建的子进程执行完毕pool.join() # 进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭

 

from multiprocessing import Pool,Manager
from time import sleep
def spider(url_queue):while not url_queue.empty():try:url = url_queue.get(timeout = 1)print(url)sleep(1)except Exception as e:print(e)
if __name__ == '__main__':url_queue = Manager().Queue()for i in range(1,11):url =
f'https://www.hupu.com/home/v1/news?pageNo=
{i}&pageSize=50'url_queue.put(url)pool = Pool(3)
pool.apply_async(func=spider,args=
(url_queue,))pool.apply_async(func=spider,args=
(url_queue,))pool.apply_async(func=spider,args=
(url_queue,))pool.close()pool.join()

 

爬虫之协程

        网络爬虫速度效率慢,多部分在于阻塞IO这块(网络/磁盘)。在阻塞时,CPU的中内核是可以处理别的非IO操作。因此可以考虑使用协程来提升爬虫效率,这种操作的技术就是协程.

协程一种轻量级线程,拥有自己的寄存器上下文和栈,本质是一个进程
相对于多进程,无需线程上下文切换的开销,无需原子操作锁定及同步的开销


简单的说就是让阻塞的子程序让出CPU给可以执行的子程序


一个进程包含多个线程,一个线程可以包含多个协程

多个线程相对独立,线程的切换受系统控制。 多个协程也相对独立,但是其切换由程序自己控制

安装 

pip install aiohttp

官网:https://docs.aiohttp.org/en/stable/ 

常用方法

属性或方法功能
aiohttp.ClientSession()获取客户端函数
session.get(url)发送get请求
seesion.post(url)发送post请求
resp.status获取响应状态码
resp.url 获取响应url地址
resp.cookies获取响应cookie内容
resp.headers获取响应头信息
resp.read()获取响应bytes类型
resp.text()获取响应文本内容
import aiohttp
import asyncio
async def first():async with aiohttp.ClientSession() as
session:  # aiohttp.ClientSession() ==
import requests 模块async with
session.get('http://httpbin.org/get') as
resp:rs = await resp.text()print(rs)
headers = {'User-Agent':'aaaaaa123'}
async def test_header():async with
aiohttp.ClientSession(headers= headers) as
session:  # aiohttp.ClientSession() ==
import requests 模块async with
session.get('http://httpbin.org/get') as
resp:rs = await resp.text()print(rs)async def test_params():async with
aiohttp.ClientSession(headers= headers) as
session:  # aiohttp.ClientSession() ==
import requests 模块async with
session.get('http://httpbin.org/get',params=
{'name':'bjsxt'}) as resp:rs = await resp.text()print(rs)
async def test_cookie():async with
aiohttp.ClientSession(headers=
headers,cookies={'token':'sxt123id'}) as
session:  # aiohttp.ClientSession() ==
import requests 模块async with
session.get('http://httpbin.org/get',params=
{'name':'bjsxt'}) as resp:rs = await resp.text()print(rs)
async def test_proxy():async with
aiohttp.ClientSession(headers=
headers,cookies={'token':'sxt123id'}) as
session:  # aiohttp.ClientSession() ==
import requests 模块async with
session.get('http://httpbin.org/get',params=
{'name':'bjsxt'},proxy =
'http://name:pwd@ip:port' ) as resp:rs = await resp.text()print(rs)
if __name__ == '__main__':loop = asyncio.get_event_loop()loop.run_until_complete(test_cookie())

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/306442.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Canvas技法】在Canvas按圆周绘制图形或是标注文字时,角度累加的方向为顺时针,起点为x轴正向

【图解说明】 【核心代码】 // 画圆弧及方向for(var i0;i<4;i){var startMath.PI/2*i;var endstartMath.PI/2;var x1180*Math.cos(start);var y1180*Math.sin(start);var x2180*Math.cos(end);var y2180*Math.sin(end);ctx.beginPath();ctx.arc(0,0,180,start,end,false);ct…

常见的解析漏洞总结

文件解析漏洞 文件解析漏洞主要由于网站管理员操作不当或者 Web 服务器自身的漏洞&#xff0c;导致一些特殊文件被 IIS、apache、nginx 或其他 Web服务器在某种情况下解释成脚本文件执行。 比如网站管理员配置不当&#xff0c;导致php2、phtml、ascx等等这些文件也被当成脚本文…

智慧公厕是什么?智慧公厕让“方便”更方便

智慧公厕是利用物联网、大数据、云计算、网络通信和自动化控制技术&#xff0c;将公共厕所实现信息化、智慧化和数字化使用与管理的一项创新举措。它建立了全面监测感知平台&#xff0c;通过实时监控公共厕所的运行状态&#xff0c;为管理单位提供高效的作业流程规划和安排&…

TPMD 程序:利用分子动力学轨迹研究速率过程并进行温度编程分子动力学计算的工具包

分享一篇使用分子动力学轨迹研究速率过程和执行温度程序化分子动力学计算的工具包&#xff1a;TPMD toolkit 。 感谢论文的原作者&#xff01; 主要内容 “ 以工具包的形式提供了分析分子动力学 (MD) 轨迹中的状态到状态转换所需的一组基本组件。该工具包可用于 (a) 确定系…

递归、搜索与回溯算法:⼆叉树中的深搜

⼆叉树中的深搜 深度优先遍历&#xff08;DFS&#xff0c;全称为 Depth First Traversal&#xff09;&#xff0c;是我们树或者图这样的数据结构中常⽤的 ⼀种遍历算法。这个算法会尽可能深的搜索树或者图的分⽀&#xff0c;直到⼀条路径上的所有节点都被遍历 完毕&#xff…

SpringBoot项目 jar包方式打包部署

SpringBoot项目 jar包方式打包部署 传统的Web应用进行打包部署&#xff0c;通常会打成war包形式&#xff0c;然后将War包部署到Tomcat等服务器中。 在Spring Boot项目在开发完成后&#xff0c;确实既支持打包成JAR文件也支持打包成WAR文件。然而&#xff0c;官方通常推荐将Sp…

【MATLAB源码-第6期】基于matlab的QPSK的误码率BER和误符号率SER仿真。

1、算法描述 QPSK&#xff0c;有时也称作四位元PSK、四相位PSK、4-PSK&#xff0c;在坐标图上看是圆上四个对称的点。通过四个相位&#xff0c;QPSK可以编码2位元符号。图中采用格雷码来达到最小位元错误率&#xff08;BER&#xff09; — 是BPSK的两倍. 这意味著可以在BPSK系统…

Java | Leetcode Java题解之第22题括号生成

题目&#xff1a; 题解&#xff1a; class Solution {static List<String> res new ArrayList<String>(); //记录答案 public List<String> generateParenthesis(int n) {res.clear();dfs(n, 0, 0, "");return res;}public void dfs(int n ,int…

阿里云函数计算 FC牵手通义灵码 ,打造智能编码新体验

通义灵码自成功入职阿里云后&#xff0c;其智能编程助手的角色除了服务于阿里云内部几万开发者&#xff0c;如今进一步服务函数计算 FC 产品开发者。近日&#xff0c;通义灵码正式进驻函数计算 FC WebIDE&#xff0c;让使用函数计算产品的开发者在其熟悉的云端集成开发环境中&a…

Nerf-Studio复现笔记

文章目录 1. Env2. Train3. Custom data3.1 Prepare3.2 Render and eval3.3 Results 4. Summary 1. Env The configuration process was smooth on Linux, but there are some problems with tiny_cuda_nn and colmap in Windows. // According to the installation document…

4.8QT

将按钮3&#xff0c;基于qt4版本连接实现点击按钮3&#xff0c;实现关闭窗口。 widget.cpp #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget), btn3(new QPushButton(this)) {ui->s…

MySQL数据库基础--索引

索引概述 索引是帮助MySQL高效获取数据的数据结构&#xff08;有序&#xff09; 优缺点 优势劣势提高数据检索的效率&#xff0c;降低数据库的IO成本索引列也是要占用空间的通过索引列对数据进行排序&#xff0c;降低数据排序的成本&#xff0c;降低CPU的消耗索引大大提高了查…

【数据库】PostgreSQL源码编译安装方式与简单配置(v16.2)

PostgreSQL源码编译安装方式与简单配置&#xff08;v16.2&#xff09; 一、PostgreSQL安装基本介绍1.1 几种PostgreSQL的安装方式1.2 删除原有的PostgreSQL1.3 编译安装过程简介 二、源码编译安装方式详情2.1 下载源代码2.2 编译安装运行 configure执行 make执行 make install …

【目标检测数据集】城市街道垃圾堆相关数据集

一、GarbageOverflow&#xff1a;城市街道垃圾堆数据集 该垃圾堆数据集是通过爬虫从网上进行爬取得到的&#xff0c;一共包含1188张图片&#xff0c;有2个类别&#xff0c;分别为[overflow, No Overflow]&#xff0c;两个标签的数量分别为1734个标签和414个标签。部分数据集及…

2024-3-29 群讨论:如何看到一个线程的所有 JFR 事件

以下来自本人拉的一个关于 Java 技术的讨论群。关注公众号&#xff1a;hashcon&#xff0c;私信拉你 如何查看一个线程所有相关的 JFR 事件 一般接口响应慢&#xff0c;通过日志可以知道是哪个线程&#xff0c;但是如何查看这个线程的所有相关的 JFR 事件呢&#xff1f;JMC 有…

web笔记再整理

前四天笔记在此连接: web前端笔记表单练习题五彩导航栏练习题-CSDN博客https://blog.csdn.net/simply_happy/article/details/136917265?spm1001.2014.3001.5502 # 1.边框弧度​ div {​ width: 300px;​ height: 50px;​ background-color: aqua;​ …

EditPlus来啦(免费使用!)

hello&#xff0c;我是小索奇 今天推荐一款编辑器&#xff0c;是索奇学习JavaSE时入手滴&#xff0c;非常好用哈&#xff0c;小索奇还是通过老杜-杜老师入手滴&#xff0c;相信很多人也是通过老杜认识嘞&#xff0c;来寻找破解版或者准备入手这个间接使用的编辑器~ EditPlus是…

数据结构-----Lambda表达式

文章目录 1 背景1.1 Lambda表达式的语法1.2 函数式接口 2 Lambda表达式的基本使用2.1 语法精简 3 变量捕获3.1 匿名内部类3.2 匿名内部类的变量捕获3.3 Lambda的变量捕获 4 Lambda在集合当中的使用4.1 Collection接口4.2 List接口4.3 Map接口 HashMap 的 forEach() 5 总结 1 背…

kafka快速入门+应用

Kafka, 构建TB级异步消息系统 1.快速入门 1.1 阻塞队列 在生产线程 和 消费线程 之间起到了 &#xff0c; 缓冲作用&#xff0c;即避免CPU 资源被浪费掉 BlockingQueue 解决 线程通信 的问题阻塞方法 put 、 take生产者、消费者 模式 生产者&#xff1a;产生数据的线程…

【VSCode+Keil5+STM32CubeMX】开发环境配置

一、软件下载 二、软件安装 三、配置环境 四、验证开发环境 五、Keil与VS Code的同步 从0到1搭建VS Code Keil5 STM32CubeMX开发环境 优点 支持标准库HAL库LL库代码编辑更“现代化”&#xff1a;代码提示、函数跳转、更高自由度的定制主题等优点多端同步&#xff0c;VS Code和…