LeetCode-72. 编辑距离【字符串 动态规划】

LeetCode-72. 编辑距离【字符串 动态规划】

  • 题目描述:
  • 解题思路一:动规五部曲
  • 解题思路二:动态规划【版本二】
  • 解题思路三:0

题目描述:

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

示例 1:

输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:

输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)

提示:

0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成

此题的解题思路与LeetCode-1143. 最长公共子序列【字符串 动态规划】非常一致!

解题思路一:动规五部曲

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。

有同学问了,为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?

为什么这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。

其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。

  1. 确定递推公式
    在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换

也就是如上4种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1]就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i - 1][j] + 1;

操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是删除元素,添加元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = “ad” ,word2 = “a”,word1删除元素’d’ 和 word2添加一个元素’d’,变成word1=“a”, word2=“ad”, 最终的操作数是一样! dp数组如下图所示意的:

            a                         a     d+-----+-----+             +-----+-----+-----+|  0  |  1  |             |  0  |  1  |  2  |+-----+-----+   ===>      +-----+-----+-----+a |  1  |  0  |           a |  1  |  0  |  1  |+-----+-----+             +-----+-----+-----+d |  2  |  1  |+-----+-----+

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
}
else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
  1. dp数组如何初始化
    再回顾一下dp[i][j]的定义:

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。

那么dp[i][0] 和 dp[0][j] 表示什么呢?

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

  1. 确定遍历顺序
    从如下四个递推公式:

dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = dp[i - 1][j - 1] + 1
dp[i][j] = dp[i][j - 1] + 1
dp[i][j] = dp[i - 1][j] + 1
可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:
在这里插入图片描述
所以在dp矩阵中一定是从左到右从上到下去遍历。

  1. 举例推导dp数组
    以示例1为例,输入:word1 = “horse”, word2 = "ros"为例,dp矩阵状态图如下:
    在这里插入图片描述
class Solution:def minDistance(self, word1: str, word2: str) -> int:dp = [[0] * (len(word2)+1) for _ in range(len(word1)+1)]for i in range(len(word1)+1):dp[i][0] = ifor j in range(len(word2)+1):dp[0][j] = jfor i in range(1, len(word1)+1):for j in range(1, len(word2)+1):if word1[i-1] == word2[j-1]:dp[i][j] = dp[i-1][j-1]else:dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1return dp[-1][-1]

时间复杂度:O(nm)
空间复杂度:O(nm)

解题思路二:动态规划【版本二】

class Solution:def minDistance(self, word1: str, word2: str) -> int:m, n = len(word1), len(word2)dp = [[0] * (n+1) for _ in range(m+1)]for i in range(m+1):dp[i][0] = ifor j in range(n+1):dp[0][j] = jfor i in range(1, m+1):for j in range(1, n+1):if word1[i-1] == word2[j-1]:dp[i][j] = dp[i-1][j-1]else:dp[i][j] = min(dp[i-1][j], dp[i-1][j-1], dp[i][j-1]) + 1return dp[-1][-1]

时间复杂度:O(nm)
空间复杂度:O(nm)

解题思路三:0


时间复杂度:O(n)
空间复杂度:O(n)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/307500.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

模组硬件通用|ESD静电释放注意事项

当我们在进行接插件操作或者电路板调试时&#xff0c;有时会出现接口损坏或者电路板上的某个IC芯片失效的情况&#xff0c;原因可能仅仅是手触摸到了IC芯片&#xff0c;ESD(Electro-Static discharge 静电释放)导致了损坏。模组作为一个集成电路板&#xff0c;内部含有不同型号…

C语言:约瑟夫环问题详解

前言 哈喽&#xff0c;宝子们&#xff01;本期为大家带来一道C语言循环链表的经典算法题&#xff08;约瑟夫环&#xff09;。 目录 1.什么是约瑟夫环2.解决方案思路3.创建链表头结点4.创建循环链表5.删除链表6.完整代码实现 1.什么是约瑟夫环 据说著名历史学家Josephus有过以下…

弱口令入侵FE企业管理平台【附口令】

漏洞描述 飞企互联-FE企业运营管理平台 druid路径弱口令&#xff0c;攻击者可能通过尝试弱口令&#xff0c;非法进入系统&#xff0c;恶意操作或者收集信息进一步攻击利用。 漏洞复现 1、Fofa app"飞企互联-FE企业运营管理平台"2、零零信安 (html_banner360浏览…

C# Web应用调用EXE文件的一些实践

目录 需求 范例运行环境 可执行文件的设计 调用可执行文件方法 RunExecuteFile RunShellExecuteFile 方法的区别 WEB调用举例 小结 需求 最近同事使用Python开发了一款智能文字转语音的程序&#xff0c;经讨论部署在WINDOWS环境服务器下&#xff0c;因此需要生成目标…

软件供应链安全:寻找最薄弱的环节

在当今的数字时代&#xff0c;软件占据主导地位&#xff0c;成为全球组织业务和创新的支柱。它是差异化、项目效率、成本降低和竞争力背后的驱动力。软件决定了企业如何运营、管理与客户、员工和合作伙伴的关系&#xff0c;以及充分利用他们的数据。 挑战在于&#xff0c;当今…

【Godot4.2】CanvasItem绘图函数全解析 - 0.概述

概述 Godot提供了CanvasItem类型&#xff0c;并提供了_draw虚函数和一系列绘图函数。通过这些绘图函数&#xff0c;我们可以绘制各种图形、文本、纹理、样式盒、导航路径、辅助线以及制作自定义Node2D或Control。 我个人以往研究和使用比较多的是基础图形绘制功能&#xff0c…

pbootcms百度推广链接打不开显示404错误页面

PbootCMS官方在2023年4月21日的版本更新中&#xff08;对应V3.2.5版本&#xff09;&#xff0c;对URL参数添加了如下判断 if(stripos(URL,?) ! false && stripos(URL,/?tag) false && stripos(URL,/?page) false && stripos(URL,/?ext_) false…

【算法分析与设计】全排列

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;算法分析与设计 ⛺️稳中求进&#xff0c;晒太阳 题目 给定一个不含重复数字的整数数组 nums &#xff0c;返回其 所有可能的全排列 。可以 按任意顺序 返回答案。 示例 示例 1&#xff1…

单细胞RNA测序(scRNA-seq)Cellranger流程入门和数据质控

单细胞RNA测序(scRNA-seq)Cellranger流程入门和数据质控 单细胞RNA测序(scRNA-seq)基础知识可查看以下文章: 单细胞RNA测序(scRNA-seq)工作流程入门 单细胞RNA测序(scRNA-seq)细胞分离与扩增 1. 单细胞RNA-seq样本数据说明 样本数据来源文章:Acquired cancer re…

探秘大模型:《提示工程:技巧、方法与行业应用》背后的故事

提示工程是一种新兴的利用人工智能的技术&#xff0c;它通过设计提示引导生成式 AI 模型产生预期的输出&#xff0c;来提升人与 AI 的互动质量&#xff0c;激发 AI 模型的潜力&#xff0c;提升AI的应用水平。 为了让每一个人都拥有驱动大模型的能力&#xff0c;以微软全球副总裁…

Acwing.3999 最大公约数(gcd欧拉函数)

题解 给定两个正整数 a,m&#xff0c;其中 a<m。 请你计算&#xff0c;有多少个小于 m 的非负整数 x满足&#xff1a; gcd(a,m)gcd(ax,m) 输入格式 第一行包含整数 T &#xff0c;表示共有 T 组测试数据。 每组数据占一行&#xff0c;包含两个整数 a,m 。 输出格式 每…

计算机网络——40各个层次的安全性

各个层次的安全性 安全电子邮件 Alice需要发送机密的报文m给Bob Alice 产生随机的对称秘钥&#xff0c; K s K_s Ks​使用 K s K_s Ks​对报文进行加密&#xff08;为了效率&#xff09;对 K s K_s Ks​使用Bob的公钥进行加密发送 K s ( m ) K_s(m) Ks​(m)和 K B ( K S ) K…

Linux执行命令监控详细实现原理和使用教程,以及相关工具的使用

Linux执行命令监控详细实现原理和使用教程&#xff0c;以及相关工具的使用。 0x00 背景介绍 Linux上的HIDS需要实时对执行的命令进行监控&#xff0c;分析异常或入侵行为&#xff0c;有助于安全事件的发现和预防。为了获取执行命令&#xff0c;大致有如下方法&#xff1a; 遍…

别等Sora了!字节跳动旗下国产AI工具Dreamina,AI视频生成虽不完美,但够惊艳!

别等 Sora 了&#xff0c;试试字节跳动的 Dreamina&#xff01;Dreamina 是剪映旗下的一个 AI 创作平台&#xff0c;目前支持「文生图」、「智能画布」和「视频生成」功能。 Dreamina 官网&#xff1a;https://dreamina.jianying.com/ai-tool/home 之前对 Dreamina 的「文生图…

暴力枚举法

虽然暴力枚举法有时候效率低&#xff0c;时间复杂度高&#xff0c;但是在面对小规模数据集的时候&#xff0c;暴力枚举法往往是很好的思维利器。 B: 01 串的熵&#xff08;5分&#xff09; 问题描述 #include <iostream> #include <cmath> #include <algorithm…

【C++算法模板】数论:欧拉筛,线性查找质数的算法

文章目录 1&#xff09;传统找质数的方法&#xff08;优化筛选次数&#xff09;2&#xff09;欧拉筛 1&#xff09;传统找质数的方法&#xff08;优化筛选次数&#xff09; bool isPrime(int num) {for(int i2;i<sqrt(num)) {if(num%i0)return false;}return true; }如果要…

Training - 使用 WandB 配置 可视化 模型训练参数

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://blog.csdn.net/caroline_wendy/article/details/137529140 WandB (Weights&Biases) 是轻量级的在线模型训练可视化工具&#xff0c;类似于 TensorBoard&#xff0c;可以帮助用户跟踪…

统信UOS(Linux)安装nvm node管理工具

整篇看完再操作&#xff0c;有坑&#xff01;&#xff01; 官网 nvm官网 按照官网方式安装&#xff0c;一直报 错 经过不断研究&#xff0c;正确步骤如下 1、下载安装包 可能因为网络安全不能访问github&#xff0c;我是链接热点下载的 wget https://github.com/nvm-sh/…

three.js跟着教程实现VR效果(四)

参照教程&#xff1a;https://juejin.cn/post/6973865268426571784&#xff08;作者&#xff1a;大帅老猿&#xff09; 1.WebGD3D引擎 用three.js &#xff08;1&#xff09;使用立方体6面图 camera放到 立方体的中间 like “回” 让贴图向内翻转 &#xff08;2&#xff09;使…

界面控件DevExpress WinForms/WPF v23.2 - 富文本编辑器支持内容控件

众所周知内容控件是交互式UI元素(文本字段、下拉列表、日期选择器)&#xff0c;用于在屏幕上输入和管理信息。内容控件通常在模板/表单中使用&#xff0c;以标准化文档格式和简化数据输入。DevExpress文字处理产品库&#xff08;Word Processing Document API、WinForm和WPF富文…