python-numpy(3)-线性代数

一、方程求解

参考资料
对于Ax = b 这种方程:

  1. np.linalg.inv(A).dot(B)
  2. np.linalg.solve(A,b)

1.1 求解多元一次方程一个直观的例子

# AX=B
# X = A^(-1)*B 
A = np.array([[7, 3, 0, 1], [0, 1, 0, -1], [1, 0, 6, -3], [1, 1, -1, -1]])
B = np.array([8, 6, -3, 1])
X = np.linalg.inv(A).dot(B)print("x是:{} ".format(X[0]))
print("y是:{} ".format(X[1]))
print("z是:{} ".format(X[2]))
print("k是:{} ".format(X[3]))

1.2. 方程求解具体步骤

1.2.1 创建矩阵

A = np.mat("0 1 2;1 0 3;4 -3 8")
print (A)
#[[ 0 1 2]
# [ 1 0 3]
# [ 4 -3 8]]

1.2.2 求解逆矩阵

# 使用inv函数计算逆矩阵
inv = np.linalg.inv(A)
print (inv)
#[[-4.5 7. -1.5]
# [-2. 4. -1. ]
# [ 1.5 -2. 0.5]]

验证是否是逆矩阵

print (A * inv)
#[[ 1. 0. 0.]
# [ 0. 1. 0.]
# [ 0. 0. 1.]]

1.2.3 完整的求解过程

# Bx = b 
#创建矩阵和数组
B = np.mat("1 -2 1;0 2 -8;-4 5 9")
b = np.array([0,8,-9])# 调用solve函数求解线性方程
x = np.linalg.solve(B,b)
print (x)
#[ 29. 16. 3.]# 使用dot函数检查求得的解是否正确
print (np.dot(B , x))
# [[ 0. 8. -9.]]

二、常用的定义

2.1 特征值和特征向量

  • 特征值(eigenvalue)即方程 Ax = ax 的根,是一个标量。其中,A 是一个二维矩阵,x 是一个一维向量。特征向量(eigenvector)是关于特征值的向量
  • numpy.linalg模块中,eigvals函数可以计算矩阵的特征值,而eig函数可以返回一个包含特征值和对应的特征向量的元组
# 创建一个矩阵
C = np.mat("3 -2;1 0")# 调用eigvals函数求解特征值
c0 = np.linalg.eigvals(C)
print (c0)
# [ 2. 1.]# 使用eig函数求解特征值和特征向量 (该函数将返回一个元组,按列排放着特征值和对应的特征向量,其中第一列为特征值,第二列为特征向量)
c1,c2 = np.linalg.eig(C)
print (c1)
# [ 2. 1.]
print (c2)
#[[ 0.89442719 0.70710678]
# [ 0.4472136 0.70710678]]# 使用dot函数验证求得的解是否正确
for i in range(len(c1)):print ("left:",np.dot(C,c2[:,i]))print ("right:",c1[i] * c2[:,i])
#left: [[ 1.78885438]
# [ 0.89442719]]
#right: [[ 1.78885438]
# [ 0.89442719]]
#left: [[ 0.70710678]
# [ 0.70710678]]
#right: [[ 0.70710678]
# [ 0.70710678]]
使用数组函数创建数组
a = np.array([[1, -2j], [2j, 5]])print("Array is :",a)
# 使用 with() 函数计算特征值
c, d = np.linalg.eigh(a)print("Eigen value is :", c)
print("Eigen value is :", d)

2.2 奇异值分解

参考资料

  • SVD(Singular Value Decomposition,奇异值分解)是一种因子分解运算,将一个矩阵分解为3个矩阵的乘积
  • numpy.linalg模块中的svd函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、Sigma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值。
# 分解矩阵
D = np.mat("4 11 14;8 7 -2")
# 使用svd函数分解矩阵
U,Sigma,V = np.linalg.svd(D, full_matrices=False)
print ("U:",U)
#U: [[-0.9486833 -0.31622777]
# [-0.31622777 0.9486833 ]]
print ("Sigma:",Sigma)
#Sigma: [ 18.97366596 9.48683298]
print ("V",V)
#V [[-0.33333333 -0.66666667 -0.66666667]
# [ 0.66666667 0.33333333 -0.66666667]]
# 结果包含等式中左右两端的两个正交矩阵U和V,以及中间的奇异值矩阵Sigma# 使用diag函数生成完整的奇异值矩阵。将分解出的3个矩阵相乘
print (U * np.diag(Sigma) * V)
#[[ 4. 11. 14.]
# [ 8. 7. -2.]]

2.3 逆矩阵

  • 使用numpy.linalg模块中的pinv函数进行求解,
  • 注:inv函数只接受方阵作为输入矩阵,而pinv函数则没有这个限制

2.3.1 普通逆矩阵

# 使用inv函数计算逆矩阵
inv = np.linalg.inv(A)
print (inv)
#[[-4.5 7. -1.5]
# [-2. 4. -1. ]
# [ 1.5 -2. 0.5]]

2.3.2 广义逆矩阵

# 创建一个矩阵
E = np.mat("4 11 14;8 7 -2")
# 使用pinv函数计算广义逆矩阵
pseudoinv = np.linalg.pinv(E)
print (pseudoinv)
#[[-0.00555556 0.07222222]
# [ 0.02222222 0.04444444]
# [ 0.05555556 -0.05555556]]# 将原矩阵和得到的广义逆矩阵相乘
print (E * pseudoinv)
#[[ 1.00000000e+00 -5.55111512e-16]
# [ 0.00000000e+00 1.00000000e+00]]

2.4 行列式

  • numpy.linalg模块中的det函数可以计算矩阵的行列式
# 计算矩阵的行列式
F = np.mat("3 4;5 6")
# 使用det函数计算行列式
print (np.linalg.det(F))
# -2.0

2.5 范数

  • 顾名思义,linalg=linear+algebra,normnorm则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar):
  • 首先help(np.linalg.norm)查看其文档:norm(x, ord=None, axis=None, keepdims=False)
    *在这里插入图片描述

a=[[1,2,0],[-1,2,-1],[0,1,1]]#写入矩阵
A=np.array(a)#转换成np.array格式
a1=np.linalg.norm(A, ord=1)
a2=np.linalg.norm(A, ord=2)
a2_2=np.sum(np.abs(A) ** 2) ** 0.5 a3=np.linalg.norm(A, ord=np.Inf)
a4=np.linalg.norm(A, ord=-np.Inf)
print("第一范数为",a1)
print("第二范数为",round(a2, 2))
print("第二范数_自定义函数为",round(a2_2, 2))
print("无穷大范数为",a3)
print("无穷小范数a4为",a3)
#法二:第二范数:先求最大特征值再求#先得到A的转置矩阵与A相乘的矩阵d
b=np.transpose(A)
B=np.array(b)
d=np.matmul(B,A)#根据特征多项式得一元三次方程求解
import sympy as sp # 导入sympy包
x=sp.Symbol('x')
f=x**3-13*(x**2)+38*x-25   #见前面运算过程
x=sp.solve(f)  #得到的解析解比较复杂,故后续转换成浮点数#取四位小数输出
for i in range(0,3):x[i]=round(x[i].evalf(),4) #求出表达式的浮点数print(x[i])
maxX=x[0]
for i in x:   ## 求最大值if i > maxX:maxX= i
print("第二范数为",round(maxX**0.5,4)) 

2.6 矩阵的秩

import numpy as np
A = np.array([[1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],[0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0],[5, 1, 2, 4, 0, 0, 1, 0, 0, 0, 0, 0],[5, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],[0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0],[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]
])
B = np.array([[1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 10],[0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 15],[5, 1, 2, 4, 0, 0, 1, 0, 0, 0, 0, 0, 100],[5, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 60],[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,1],[0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,4],[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,2],[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,10]
]
)
np.linalg.matrix_rank(A)#返回矩阵的秩
np.linalg.matrix_rank(B)#返回矩阵的秩

2.7 矩阵的迹

方阵的迹就是主对角元素之和:

trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
import numpy as npx = np.array([[1, 2, 3], [3, 4, 5], [6, 7, 8]])
print(x)
# [[1 2 3]
#  [3 4 5]
#  [6 7 8]]y = np.array([[5, 4, 2], [1, 7, 9], [0, 4, 5]])
print(y)
# [[5 4 2]
#  [1 7 9]
#  [0 4 5]]print(np.trace(x))  # A的迹等于A.T的迹
# 13
print(np.trace(np.transpose(x)))
# 13print(np.trace(x + y))  # 和的迹 等于 迹的和
# 30
print(np.trace(x) + np.trace(y))
# 30

2.8 两个数组的矩阵积

numpy.matmul 函数返回两个数组的矩阵乘积。

  • 虽然它返回二维数组的正常乘积,
  • 如果任一参数的维数大于2,则将其视为存在于最后两个索引的矩阵的栈,并进行相应广播。
  • 另一方面,如果任一参数是一维数组,则通过在其维度上附加 1 来将其提升为矩阵,并在乘法之后被去除。
import numpy as np a = [[1,0],[0,1]] 
b = [[4,1],[2,2]] 
print (np.matmul(a,b))a = [[1,0],[0,1]] 
b = [1,2] 
print (np.matmul(a,b))
print (np.matmul(b,a))a = np.arange(8).reshape(2,2,2) 
b = np.arange(4).reshape(2,2) 
print (np.matmul(a,b))

2.9 两个向量的内积

numpy.inner() 函数返回一维数组的向量内积。对于更高的维度,它返回最后一个轴上的和的乘积。

print (np.inner(np.array([1,2,3]),np.array([0,1,0])))
# 等价于 1*0+2*1+3*0a = np.array([[1,2], [3,4]]) 
b = np.array([[11, 12], [13, 14]])  
"""
1*11+2*12, 1*13+2*14 
3*11+4*12, 3*13+4*14
"""
print ('内积:')
print (np.inner(a,b))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/309428.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式单片机 TTL电平、232电平、485电平的区别和联系

一、简介 TTL、232和485是常见的串口通信标准,它们在电平和通信方式上有所不同, ①一般情况下TTL电平应用于单片机外设,属于MCU/CPU等片外外设; ②232/485电平应用于产品整体对外的接口,一般是片外TTL串口转232/485…

【C语言】每日一题,快速提升(1)!

调整数组使奇数全部都位于偶数前面 题目: 输入一个整数数组,实现一个函数 来调整该数组中数字的顺序使得数组中所有的奇数位于数组的前半部分 所有偶数位于数组的后半部分 解题思路: 给定两个下标left和right,left放在数组的起始…

Linux三剑客-sed、awk、egrep(上)

一、知识梗概 二、正则表达式 定义:正则表达式是一种强大的文本处理工具,用于在文本中搜索符合特定模式的字符串。它由一系列特殊字符和普通字符组成,可以定义复杂的搜索模式。正则表达式被广泛应用于各种编程语言和文本处理工具中。 简单来…

webpack-(plugin,本地服务器,路径别名,安装vue)

安装vue npm i vue-loader -D npm i vue 编写一个vue文件: 在index.html中设置 一个id为app的div 将vue文件挂载到app中 vue比较特殊,除了使用loader外,还使用了plugin const path require("path"); const { VueLoaderPlugin …

涂层翅片铝箔的主要技术指标

涂层铝箔是在非涂层铝箔的基础上进行表面处理后形成的,除了需要具备非涂层铝箔要求的化学成分、机械性能和几何尺寸等性能指标外,还应具备良好的板型和涂层性能。 1、铝箔的板型 涂层铝箔的生产工艺要求铝箔要有良好的板型,这是涂层铝箔生产…

Go语言入门|包、关键字和标识符

目录 Go语言 包文件 规则 关键字 规则 标识符 规则 预定义标识符 Go语言 Go语言是一种静态类型、编译型和并发型的编程语言,由Google开发。Go的源代码文件以.go为扩展名,文件名通常与包名保持一致。一个Go文件可以包含多个顶级声明,…

做一个后台项目的架构

后台架构的11个维度 架构1:团队协助基础工具链的选型和培训架构2:搭建微服务开发基础设施架构3:选择合适的RPC框架架构4:选择和搭建高可用的注册中心架构5:选择和搭建高可用的配置中心架构6:选择和搭建高性…

(七)C++自制植物大战僵尸游戏关卡数据加载代码讲解

植物大战僵尸游戏开发教程专栏地址http://t.csdnimg.cn/xjvbb 打开LevelData.h和LevelData.cpp文件。文件位置如下图所示。 LevelData.h 此头文件中定义了两个类,分别是OpenLevelData、LevelData,其中OpenLevelData用于加载文件数据。LevelData解析数据…

vue中预览docx、xlsx、pptx、pdf

前言:其实本来是要做全类型文件预览的,但是一直找不到合适的doc,xlx,ppt预览插件。要是有可以使用的,可以评论推荐给我 我使用的node版本:v18.19.1 参考官网:preview 文件预览 | ran 引入方式: //安装组…

学习笔记之——3DGS-SLAM系列代码解读

最近对一系列基于3D Gaussian Splatting(3DGS)SLAM的工作的源码进行了测试与解读。为此写下本博客mark一下所有的源码解读以及对应的代码配置与测试记录~ 其中工作1~5的原理解读见博客: 学习笔记之——3D Gaussian Splatting及其在SLAM与自动…

Qt 中默认代码

目录 主函数 widget的声明 widget的定义 form file .pro 文件 主函数 #include "widget.h" ​ #include <QApplication> ​ int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 上面就是 Qt 刚创建的一…

非关系型数据库(缓存数据库)redis的集群

目录 一.群集模式——Cluster 1.原理 2.作用 3.特点 4.工作机制 哈希槽 哈希槽的分配 哈希槽可按照集群主机数平均分配&#xff08;默认分配&#xff09; 根据主机的性能以及功能自定义分配 redis集群的分片 分片 如何找到给定key的分片 优势 二. 搭建Redis群集…

JVM虚拟机(五)强引用、软引用、弱引用、虚引用

目录 一、强引用二、软引用三、弱引用四、虚引用五、总结 引文&#xff1a; 在 Java 中一共存在 4 种引用&#xff1a;强、软、弱、虚。它们主要指的是&#xff0c;在进行垃圾回收的时候&#xff0c;对于不同的引用垃圾回收的情况是不一样的。下面我们就一起来看一下这 4 种引用…

基于R语言实现的负二项回归模型【理解与实现】-理解负二项回归模型和泊松回归模型之间的区别

前言 我们可以在R语言中使用MASS包中的glm.nb函数来拟合负二项模型&#xff0c;以及使用glm函数来拟合泊松模型。以下是一个详细的过程&#xff0c;包括模拟数据的生成、模型的拟合、结果的比较和解释。 需要的包 if (!require("MASS")) install.packages("M…

Linux网络基础 (二) ——(IP、MAC、端口号、TCPUDP协议、网络字节序)

文章目录 IP 地址基本概念源IP地址 & 目的IP地址 MAC 地址基本概念源MAC地址 & 目的MAC地址 端口号基本概念源端口号 & 目的端口号 TCP & UDP 协议基本概念TCP 与 UDP 的抉择 网络字节序大端、小端字节序 &#x1f396; 博主的CSDN主页&#xff1a;Ryan.Alask…

YOLOv8模型剪枝实战:DepGraph(依赖图)方法

课程链接&#xff1a;YOLOv8模型剪枝实战&#xff1a;DepGraph(依赖图)方法_在线视频教程-CSDN程序员研修院 YOLOv8是一个当前非常流行的目标检测器&#xff0c;本课程使用DepGraph&#xff08;依赖图&#xff09;剪枝方法对YOLOv8进行网络剪枝&#xff0c;使其更加轻量和实用…

Qt快速入门(MV架构之TableView + QStandardItemModel + 自定义代理小案例)

Qt快速入门&#xff08;MV架构之TableView QStandardItemModel 自定义代理小案例&#xff09; 关于MV架构的简单介绍 在Qt框架中&#xff0c;代理&#xff08;Delegate&#xff09;、模型&#xff08;Model&#xff09;和视图&#xff08;View&#xff09;之间的关系构成了…

51单片机实验03-单片机定时/计数器实验

目录 一、实验目的 二、实验说明 1、51单片机有两个16位内部计数器/定时器&#xff08;C/T&#xff0c; Counter/Timer&#xff09;。 2、模式寄存器TMOD 1) M1M0工作模式控制位&#xff1b; 2) C/T定时器或计数器选择位&#xff1a; 3&#xff09;GATE定时器/计数器运行…

Python零基础从小白打怪升级中~~~~~~~模块+异常+Pycharm的debug调试

第十节&#xff1a;模块异常Debug 一、Python模块 Python 模块(Module)&#xff0c;是一个 Python 文件&#xff0c;以 .py 结尾&#xff0c;模块能定义函数&#xff0c;类和变量&#xff0c;模块里也能包含可执行的代码。 1、导入模块 导入模块的5中方式 import 模块名fr…

C++ 之 【类与对象】从入门到精通一条龙服务 最终篇(static成员、友元、匿名对象。。。)

&#x1f4b4;到用时方恨早&#xff0c;白首方悔挣的少 车到山前没有路&#xff0c;悬崖勒马勒不住 一、再谈构造函数 1.构造函数体赋值 2.初始化列表 3.explicit关键字 二、Static成员 1.概念 2.特性 三、友元 1.友元函数 2.友元类 四、内部类 五、匿名对象 六、…