深度学习原理与Pytorch实战

深度学习原理与Pytorch实战 第2版 强化学习人工智能神经网络书籍 python动手学深度学习框架书 TransformerBERT图神经网络:
技术讲解 在这里插入图片描述

编辑推荐

1.基于PyTorch新版本,涵盖深度学习基础知识和前沿技术,由浅入深,通俗易懂,适合初学人士的深度学习入门书3.实战案例丰富有趣,深度学习原理与具体的操作流程相结合4.新增了Transformer、BERT、图神经网络等热门技术的讲解5.配有源代码和导学,让学习更直观、更有效。另有付费□□课程。

内容简介

本书是一本系统介绍深度学习技术及开源框架PyTorch的入门书。书中通过大量案例介绍了PyTorch的使用方法、神经网络的搭建、常用神经网络(如卷积神经网络、循环神经网络)的实现,以及实用的深度学习技术,包括迁移学习、对抗生成学习、深度强化学习、图神经网络等。读者通过阅读本书,可以学会构造一个图像识别器,生成逼真的图画,让机器理解单词与文本,让机器作曲,教会机器玩游戏,还可以实现一个简单的机器翻译系统。第□版基于PyTorch 1.6.0,对全书代码进行了全面更新,同时增加了Transformer、BERT、图神经网络等热门深度学习技术的讲解,更具实用性和时效性。

目录

推荐序

前言

作者简介

□ □章 深度学习简介 1

1.1 深度学习与人工智能 1

1.□ 深度学□□历史渊源 □

1.□.1 从感知机到人工神经网络 3

1.□.□ 深度学□□□ 4

1.□.3 巨头之间的角逐 5

1.3 深度学□□影响因素 6

1.3.1 大数据 6

1.3.□ 深度网络架构 7

1.3.3 GPU 11

1.4 深度学习为什么如此成功 11

1.4.1 特征学习 11

1.4.□ 迁移学习 1□

1.5 小结 13

1.6 参考文献 14

第 □章 PyTorch简介 15

□.1 PyTorch安装 15

□.□ 初识PyTorch 15

□.□.1 与Python完美融合 16

□.□.□ 张量计算 16

□.□.3 动态计算图 □0

□.3 PyTorch实例:预测房价 □7

□.3.1 准备数据 □7

□.3.□ 设计模型 □8

□.3.3 训练 □9

□.3.4 预测 31

□.3.5 术语汇总 3□

□.4 小结 33

第3章 单车预测器——你的□ □个神经网络 35

3.1 共享单车的烦恼 35

3.□ 单车预测器1.0 37

3.□.1 人工神经网络简介 37

3.□.□ 人工神经元 38

3.□.3 两个隐含神经元 40

3.□.4 训练与运行 4□

3.□.5 失败的神经预测器 4□

3.□.6 过拟合 48

3.3 单车预测器□.0 49

3.3.1 数据的预处理过程 49

3.3.□ 构建神经网络 5□

3.3.3 测试神经网络 55

3.4 剖析神经网络Neu 57

3.5 小结 61

3.6 Q&A 61

第4章 机器也懂感情——中文情绪分类器 63

4.1 神经网络分类器 64

4.1.1 如何用神经网络做分类 64

4.1.□ 分类问题的损失函数 66

4.□ 词袋模型分类器 67

4.□.1 词袋模型简介 68

4.□.□ 搭建简单文本分类器 69

4.3 程序实现 70

4.3.1 数据处理 71

4.3.□ 文本数据向量化 73

4.3.3 划分数据集 74

4.3.4 建立神经网络 75

4.4 运行结果 78

4.5 剖析神经网络 79

4.6 小结 83

4.7 Q&A 83

第5章 手写数字识别器——认识卷积神经网络 84

5.1 什么是卷积神经网络 85

5.1.1 手写数字识别任务的卷积神经网络及运算过程 86

5.1.□ 卷积运算 87

5.1.3 池化运算 93

5.1.4 立体卷积核 94

5.1.5 超参数与参数 95

5.1.6 其他说明 96

5.□ 手写数字识别器 97

5.□.1 数据准备 97

5.□.□ 构建网络 100

5.□.3 运行模型 10□

5.□.4 测试模型 104

5.3 剖析卷积神经网络 105

5.3.1 □ □层卷积核与特征图 105

5.3.□ 第二层卷积核与特征图 106

5.3.3 卷积神经网络的健壮性实验 107

5.4 小结 109

5.5 Q&A 109

5.6 扩展阅读 109

第6章 手写数字加法机——迁移学习 110

6.1 什么是迁移学习 111

6.1.1 迁移学□□由来 111

6.1.□ 迁移学□□分类 11□

6.1.3 迁移学□□意义 11□

6.1.4 如何用神经网络实现迁移学习 113

6.□ 应用案例:迁移学习如何抗击贫困 115

6.□.1 背景介绍 115

6.□.□ 方法探寻 116

6.□.3 迁移学习方法 116

6.3 蚂蚁还是蜜蜂:迁移大型卷积神经网络 117

6.3.1 任务描述与初步尝试 118

6.3.□ ResNet与模型迁移 119

6.3.3 代码实现 1□0

6.3.4 结果分析 1□3

6.3.5 更多的模型与数据 1□5

6.4 手写数字加法机 1□5

6.4.1 网络架构 1□5

6.4.□ 代码实现 1□6

6.4.3 训练与测试 133

6.4.4 结果 135

6.4.5 大规模实验 135

6.5 小结 140

6.6 实践项目:迁移与效率 140

第7章 你自己的Prisma——图像风格迁移 14□

7.1 什么是风格迁移 14□

7.1.1 什么是风格 14□

7.1.□ 风格迁移的含义 143

7.□ 风格迁移技术发展简史 144

7.3 神经网络风格迁移 146

7.3.1 神经网络风格迁移的优势 146

7.3.□ 神经网络风格迁移的基本思想 147

7.3.3 卷积神经网络的选取 148

7.3.4 内容损失 149

7.3.5 风格损失 149

7.3.6 风格损失原理分析 150

7.3.7 损失函数与优化 153

7.4 神经网络风格迁移实战 153

7.4.1 准备工作 153

7.4.□ 建立风格迁移网络 155

7.4.3 风格迁移训练 158

7.5 小结 161

7.6 扩展阅读 161

第8章 人工智能造假术——图像生成与对抗学习 16□

8.1 反卷积与图像生成 165

8.1.1 卷积神经网络回顾 165

8.1.□ 反卷积运算 167

8.1.3 反池化过程 169

8.1.4 反卷积与分数步伐 170

8.1.5 输出图像尺寸公式 171

8.1.6 批正则化技术 17□

8.□ 图像生成实验1——□小均方误差模型 173

8.□.1 模型思路 173

8.□.□ 代码实现 174

8.□.3 运行结果 178

8.3 图像生成实验□——生成器—识别器模型 180

8.3.1 生成器—识别器模型的实现 180

8.3.□ 对抗样本 183

8.4 图像生成实验3——GAN 186

8.4.1 GAN的总体架构 187

8.4.□ 程序实现 188

8.4.3 结果展示 191

8.5 小结 193

8.6 Q&A 193

8.7 扩展阅读 194

第9章 词汇的星空——神经语言模型与Word□Vec 195

9.1 词向量技术介绍 195

9.1.1 初识词向量 195

9.1.□ 传统编码方式 196

9.□ NPLM:神经概率语言模型 197

9.□.1 NPLM的基本思想 198

9.□.□ NPLM的运作过程详解 198

9.□.3 读取NPLM中的词向量 □01

9.□.4 NPLM的编码实现 □0□

9.□.5 运行结果 □05

9.□.6 NPLM的总结与□限 □07

9.3 Word□Vec □07

9.3.1 CBOW模型和Skip-gram模型的结构 □07

9.3.□ 层次归一化指数函数 □08

9.3.3 负采样 □09

9.3.4 总结及分析 □10

9.4 Word□Vec的应用 □10

9.4.1 在自己的语料库上训练Word□Vec词向量 □10

9.4.□ 调用现成的词向量 □1□

9.4.3 女人 □人=皇后 国王 □14

9.4.4 使用向量的空间位置进行词对词翻译 □16

9.4.5 Word□Vec小结 □17

9.5 小结 □17

9.6 Q&A □18

□ □0章 深度网络 LSTM作曲机——序列生成模型 □□0

10.1 序列生成问题 □□0

10.□ RNN与LSTM □□1

10.□.1 RNN □□1

10.□.□ LSTM □□7

10.3 简单01序列的学习问题 □31

10.3.1 RNN的序列学习 □3□

10.3.□ LSTM的序列学习 □41

10.4 LSTM作曲机 □44

10.4.1 MIDI文件 □44

10.4.□ 数据准备 □45

10.4.3 模型结构 □45

10.4.4 代码实现 □46

10.5 小结 □54

10.6 Q&A □55

10.7 扩展阅读 □55

□ □1章 神经机器翻译机——端到端机器翻译 □56

11.1 机器翻译简介 □57

11.1.1 基于规则的机器翻译技术 □57

11.1.□ 统计机器翻译 □58

11.1.3 神经机器翻译 □58

11.1.4 关于Zero-shot翻译 □59

11.□ 编码—解码模型 □59

11.□.1 编码—解码模型总体架构 □60

11.□.□ 编码器 □60

11.□.3 解码器 □63

11.□.4 损失函数 □67

11.□.5 编码—解码模型归纳 □69

11.□.6 编码—解码模型的效果 □69

11.3 注意力机制 □70

11.3.1 神经机器翻译中的注意力 □71

11.3.□ 注意力网络 □71

11.4 更多改进 □75

11.4.1 GRU的结构 □75

11.4.□ 双向GRU的应用 □75

11.5 神经机器翻译机的编码实现 □76

11.5.1 神经网络的构建 □80

11.5.□ 神经网络的训练 □83

11.5.3 测试神经机器翻译机 □86

11.5.4 结果展示 □87

11.6 更多改进 □91

11.6.1 集束搜索算法 □91

11.6.□ BLEU:对翻译结果的评估方法 □93

11.6.3 对编码—解码模型的改进 □94

11.7 广义的翻译 □95

11.7.1 广义翻译机 □95

11.7.□ 广义翻译的应用场景 □95

11.8 Q&A □97

□ □□章 更强的机器翻译模型——Transformer □99

1□.1 Transformer概述 □99

1□.1.1 编码—解码模型回顾 300

1□.1.□ Transformer全景概览 300

1□.1.3 神奇的自注意力 301

1□.□ Atoken旅行记 304

1□.□.1 奇怪的序号牌 304

1□.□.□ 分身之门 305

1□.□.3 新朋友 306

1□.3 Transformer部件详解 306

1□.3.1 词嵌入与位置嵌入 306

1□.3.□ 自注意力模块计算详解 307

1□.3.3 自注意力层的矩阵计算 309

1□.3.4 残差连接与层归一化 310

1□.3.5 逐点计算的前向网络层 311

1□.3.6 解码器中的自注意力 311

1□.3.7 解码器的输出层 31□

1□.4 动手训练一个Transformer翻译模型 313

1□.4.1 翻译模型中输入单位的粒度 313

1□.4.□ 模型定义 313

1□.4.3 模型训练 318

1□.4.4 Transformer相关开源库 319

1□.5 小结 319

□ □3章 学习跨任务的语言知识——预训练语言模型 3□0

13.1 语言模型简要回顾 3□0

13.□ 预训练Transformer详解 3□□

13.□.1 深入了解GPT 3□3

13.□.□ 深入了解BERT 3□4

13.□.3 模型微调 3□6

13.□.4 模型表现 3□7

13.3 单句分类:BERT句子分类实战 3□8

13.4 后BERT时代 334

13.5 小结 334

□ □4章 人体姿态识别——图网络模型 335

14.1 图网络及图论基础 335

14.1.1 图的基本概念 335

14.1.□ 什么是图网络 337

14.1.3 图网络的基本任务和应用场景 338

14.□ 图卷积网络 338

14.□.1 GCN的工作原理 338

14.□.□ 打开GCN的黑箱 340

14.□.3 从社团划分任务来理解GCN 341

14.3 实战:使用GCN识别人体姿态 344

14.3.1 数据来源与预处理 345

14.3.□ 代码实现 346

14.4 小结 350

□ □5章 AI游戏高手——深度强化学习 351

15.1 强化学习简介 35□

15.1.1 强化学□□要素 35□

15.1.□ 强化学□□应用场景 353

15.1.3 强化学□□分类 354

15.□ 深度Q学习算法 355

15.□.1 Q学习算法 356

15.□.□ DQN算法 357

15.□.3 DQN在雅达利游戏上的表现 359

15.3 DQN玩Flappy Bird的PyTorch实现 361

15.3.1 Flappy Bird的PyGame实现 361

15.3.□ DQN的PyTorch实现 368

15.4 小结 377

15.5 通用人工智能还有多远 378

15.6 Q&A 379

15.7 扩展阅读 380

作者简介

集智俱乐部(Swarma Club)成立于□003年,是一个从事学术研究、享受科学乐趣的探索者团体,也是国内致力于研究人工智能、复杂系统的科学社区之一,倡导以平等开放的态度、科学实证的精神,进行跨学科的研究与交流,力图搭建一个中国的“没有围墙的□□□”。目前已出版书籍有《科学的□□:漫谈人工智能》《走近□050:注意力、互联网与人工智能》《NetLogo多主体建模入门》,译作有《深度思考:人工智能的终点与人类创造力的起点》。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/31271.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp项目运行失败Error: getaddrinfo *.bspapp.com 文件查找失败uview-ui及推荐MarkDown软件 Typora

一、uniapp项目运行失败Error: getaddrinfo *.bspapp.com 文件查找失败uview-ui 在运行一个uniapp项目时,出现报错 文件查找失败:uview-ui,Error: getaddrinfo ENOTFOUND 960c0a.bspapp.com。hostname异常,报错的详细信息如下&…

什么是vue的keep-alive?它是如何实现的?具体缓存了什么内容?

文章目录 一、keep-alive 的核心作用二、实现原理1. 缓存管理策略2. 核心源码解析(Vue 2.x 简化版)3. 缓存生命周期 三、缓存的具体内容1. 缓存对象结构2. 具体缓存内容 四、使用示例1. 基础用法2. 配置缓存策略 五、注意事项六、实现流程图解 Vue 的 k…

pytest基础知识

pytest知识了解 pytest的基础知识了解:Python测试框架之pytest详解_lovedingd的博客-CSDN博客_pytest框架 (包含设置断点,pdb,获取最慢的10个用例的执行耗时) pytest-pytest.main()运行测试用例,pytest参数: pytest-…

Liunx(CentOS-6-x86_64)使用Nginx部署Vue项目

一:编译vue项目和上传到linux系统 通过本地编译器编译后的文件 上传服务器后的 二:安装 node(版本 v16.20.2)和npm( 8.19.4或 9.6.5) 备注一:安装nodejs就是安装node和npm, su…

分布式锁—Redisson的同步器组件

1.Redisson的分布式锁简单总结 Redisson分布式锁包括:可重入锁、公平锁、联锁、红锁、读写锁。 (1)可重入锁RedissonLock 非公平锁,最基础的分布式锁,最常用的锁。 (2)公平锁RedissonFairLock 各个客户端尝试获取锁时会排队,按照队…

2025年渗透测试面试题总结-字某某动-安全研究实习生(一面)(题目+回答)

网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 字某某动-安全研究实习生(一面) 一、岗位认知与方向选择 1. 对公司业务的理解 …

Dify平台部署记录

安装dify项目 官网地址:http://difyai.com/ github地址:https://github.com/langgenius/dify 下载项目: git clone https://github.com/langgenius/dify.git下载过慢,直接访问网页下载zip压缩包: 解压,…

串口数据记录仪DIY,体积小,全开源

作用 产品到客户现场出现异常情况,这个时候就需要一个日志记录仪、黑匣子,可以记录产品的工作情况,当出现异常时,可以搜集到上下文的数据,从而判断问题原因。 之前从网上买过,但是出现过丢数据的情况耽误…

如何用HTML5 Canvas实现电子签名功能✍️

🤖 作者简介:水煮白菜王,一位资深前端劝退师 👻 👀 文章专栏: 前端专栏 ,记录一下平时在博客写作中,总结出的一些开发技巧和知识归纳总结✍。 感谢支持💕💕&a…

Uniapp项目运行到微信小程序、H5、APP等多个平台教程

摘要:Uniapp作为一款基于Vue.js的跨平台开发框架,支持“一次开发,多端部署”。本文将手把手教你如何将Uniapp项目运行到微信小程序、H5、APP等多个平台,并解析常见问题。 一、环境准备 在开始前,请确保已安装以下工具…

Python设计模式 - 建造者模式

定义 建造者模式是一种创建型设计模式,主要用于构建包含多个组成部分的复杂对象。它将对象的构建过程与表示分离,使得同样的构建过程可以创建不同的对象表示。 结构 抽象建造者(Builder):声明创建产品的各个部件的方…

音乐API

https://neteasecloudmusicapi.vercel.app/docs/#/https://neteasecloudmusicapi.vercel.app/docs/#/ 使用实例 所有榜单内容摘要 说明 : 调用此接口,可获取所有榜单内容摘要 接口地址 : /toplist/detail 调用例子 : /toplist/detail 获取歌单所有歌曲 说明 : 由于网易云…

Jetpack Compose — 入门实践

一、项目中使用 Jetpack Compose 从此节开始,为方便起见,如无特殊说明,Compose 均指代 Jetpack Compose。 开发工具: Android Studio 1.1 创建支持 Compose 新应用 新版 Android Studio 默认创建新项目即为 Compose 项目。 注意:在 Language 下拉菜单中,Kotlin 是唯一可…

【day12】进程切换与调度:linux系统的幕后操控术

【Day12】进程切换与调度:linux系统的幕后操控术 进程优先级进程属性:UID进程属性:PRI和NI进程饥饿 竞争/独立/并行/并发进程切换进程调度(O(1)调度算法) 进程优先级 进程优先级的本质:衡量进程得到CPU资源…

STM32之BKP

VBAT备用电源。接的时候和主电源共地,正极接在一起,中间连接一个100nf的电容。BKP是RAM存储器。 四组VDD都要接到3.3V的电源上,要使用备用电池,就把电池正极接到VBAT,负极跟主电源共地。 TEMPER引脚先加一个默认的上拉…

mapbox高阶,结合threejs(threebox)添加管道

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:mapbox 从入门到精通 文章目录 一、🍀前言1.1 ☘️mapboxgl.Map 地图对象1.2 ☘️mapboxgl.Map style属性1.3 ☘️threebox Tube静态对象二、🍀使用thr…

Android15使用FFmpeg解码并播放MP4视频完整示例

效果: 1.编译FFmpeg库: 下载FFmpeg-kit的源码并编译生成安装平台库 2.复制生成的FFmpeg库so文件与包含目录到自己的Android下 如果没有prebuiltLibs目录,创建一个,然后复制 包含目录只复制arm64-v8a下

利用FatJar彻底解决Jar包冲突(三)

利用FatJar彻底解决Jar包冲突 Spring 容器的加载与隔离⽀持注解配置⽂件定位与容器初始化嵌套Spring容器的加载 隔离优化EagleEye traceId不⼀致问题原因解决 Spring 容器的加载与隔离 ⽀持注解 这个⽐较容易,主要是我们之前的应⽤不⽀持⼆⽅包内部的注解&#xf…

ThinkPHP8.0+MySQL8.0搭建简单实用电子证书查询系统

客户花了100元买了一个系统,开始不能导入,到处找人帮忙解决。给解决能导入了,不能修改,满足不了用户的需求。用户一狠心,花200块钱,叫我给他定制了一个电子证书查询系统。还免费给部署到服务器。惭愧惭愧……

越早越好!8 个反直觉的金钱真相|金钱心理学

很多人都追求财富自由,但成功的人少之又少。 这可能是因为,人们往往忽略了一些金钱的真相和常识。 01 金钱常识 & 真相 为了构建健康的金钱观,我读了一本有点反直觉,有点像鸡汤,但都是财富真相的书。 来自 Morg…