YOLOv9改进策略 | 损失函数篇 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数

一、本文介绍

这篇文章介绍了YOLOv9的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的损失函数超过了二十余种,每种都针对特定的目标检测挑战进行优化。文章会详细探讨这些损失函数如何提高YOLOv9在各种检测任务中的性能,包括提升精度、加快收敛速度和增强模型对复杂场景的适应性。本文章主要是为了发最近新出的Inner思想改进的各种EIoU的文章服务,其中我经过实验在绝大多数下的效果都要比本文中提到的各种损失效果要好。 

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏    

目录

一、本文介绍

二、各种损失函数的基本原理 

2.1 交集面积和并集面积

2.2 IoU

2.3 SIoU

2.4 WioU

2.5 GIoU

2.6 DIoU

2.7 EIoU

2.8 CIoU

2.9 FocusLoss 

三、核心代码

四、添加教程

4.1 步骤一

4.2 步骤二

4.3 步骤三

五、全文总结 


二、各种损失函数的基本原理 

2.1 交集面积和并集面积

在理解各种损失函数之前我们需要先来理解一下交集面积和并集面积,在数学中我们都学习过集合的概念,这里的交集和并集的概念和数学集合中的含义是一样的。


2.2 IoU

论文地址:IoU Loss for 2D/3D Object Detectio

适用场景:普通的IoU并没有特定的适用场景

概念: 测量预测边界框和真实边界框之间的重叠度(最基本的边界框损失函数,后面的都是居于其进行计算)。


2.3 SIoU

论文地址:SIoU: More Powerful Learning for Bounding Box Regression

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。

概念: SIoU损失通过融入角度考虑和规模敏感性,引入了一种更为复杂的边界框回归方法,解决了以往损失函数的局限性,SIoU损失函数包含四个组成部分:角度损失、距离损失、形状损失和第四个未指定的组成部分。通过整合这些方面,从而实现更好的训练速度和预测准确性。


2.4 WioU

论文地址:WIoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

适用场景:适用于需要动态调整损失焦点的情况,如不均匀分布的目标或不同尺度的目标检测。

概念:引入动态聚焦机制的IoU变体,旨在改善边界框回归损失。


2.5 GIoU

论文地址:GIoU: A Metric and A Loss for Bounding Box Regression

适用场景:适合处理有重叠和非重叠区域的复杂场景,如拥挤场景的目标检测。

概念: 在IoU的基础上考虑非重叠区域,以更全面评估边界框


2.6 DIoU

论文地址:DIoU: Faster and Better Learning for Bounding Box Regression

适用场景:适用于需要快速收敛和精确定位的任务,特别是在边界框定位精度至关重要的场景。

概念:结合边界框中心点之间的距离和重叠区域。


2.7 EIoU

论文地址:EIoU:Loss for Accurate Bounding Box Regression

适用场景:可用于需要进一步优化边界框对齐和形状相似性的高级场景。

概念:EIoU损失函数的核心思想在于提高边界框回归的准确性和效率。它通过以下几个方面来优化目标检测:

1. 增加中心点距离损失:通过最小化预测框和真实框中心点之间的距离,提高边界框的定位准确性。

2. 考虑尺寸差异:通过惩罚宽度和高度的差异,EIoU确保预测框在形状上更接近真实框。

3. 结合最小封闭框尺寸:将损失函数与包含预测框和真实框的最小封闭框的尺寸相结合,从而使得损失更加敏感于对象的尺寸和位置。

EIoU损失函数在传统IoU基础上增加了这些考量,以期在各种尺度上都能获得更精确的目标定位,尤其是在物体大小和形状变化较大的场景中。


2.8 CIoU

论文地址:CIoU:Enhancing Geometric Factors in Model Learning

适用场景:适合需要综合考虑重叠区域、形状和中心点位置的场景,如复杂背景或多目标跟踪。

概念:综合考虑重叠区域、中心点距离和长宽比。


2.9 FocusLoss 

论文地址:Focal Loss for Dense Object Detection

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。 

Focal Loss由Kaiming He等人在论文《Focal Loss for Dense Object Detection》中提出,旨在解决在训练过程中正负样本数量极度不平衡的问题,尤其是在一些目标检测任务中,背景类别的样本可能远远多于前景类别的样本。

Focal Loss通过修改交叉熵损失,增加一个调整因子这个因子降低了那些已经被正确分类的样本的损失值,使得模型的训练焦点更多地放在难以分类的样本上。这种方式特别有利于提升小目标或者在复杂背景中容易被忽视的目标的检测性能。简而言之,Focal Loss让模型“关注”(或“专注”)于学习那些对提高整体性能更为关键的样本。

 


三、核心代码

核心代码的使用方式看章节四!

def xyxy2xywh(x):"""Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is thetop-left corner and (x2, y2) is the bottom-right corner.Args:x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.Returns:y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format."""assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copyy[..., 0] = (x[..., 0] + x[..., 2]) / 2  # x centery[..., 1] = (x[..., 1] + x[..., 3]) / 2  # y centery[..., 2] = x[..., 2] - x[..., 0]  # widthy[..., 3] = x[..., 3] - x[..., 1]  # heightreturn ydef bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, MDPIoU=False,Inner=False, Focaleriou=False, ShapeIoU=False, ratio=0.7, feat_h=640, SIoU=False, EIoU=False,WIoU=False, Focal=False, alpha=1, gamma=0.5,feat_w=640, eps=1e-7, d=0.00, u=0.95, scale=0.0):# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)# Get the coordinates of bounding boxesif Inner:if not xywh:box1, box2 = xyxy2xywh(box1), xyxy2xywh(box2)(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)b1_x1, b1_x2, b1_y1, b1_y2 = x1 - (w1 * ratio) / 2, x1 + (w1 * ratio) / 2, y1 - (h1 * ratio) / 2, y1 + (h1 * ratio) / 2b2_x1, b2_x2, b2_y1, b2_y2 = x2 - (w2 * ratio) / 2, x2 + (w2 * ratio) / 2, y2 - (h2 * ratio) / 2, y2 + (h2 * ratio) / 2# Intersection areainter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)# Union Areaunion = w1 * h1 * ratio * ratio + w2 * h2 * ratio * ratio - inter + epselse:if xywh:  # transform from xywh to xyxy(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_else:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaunion = w1 * h1 + w2 * h2 - inter + epsself = Noneif scale:self = WIoU_Scale(1 - (inter / union))# IoUiou = inter / unionif Focaleriou:iou = ((iou - d) / (u - d)).clamp(0, 1)  # default d=0.00,u=0.95if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps),gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),gamma)  # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter / (union + eps), gamma)  # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIouelif ShapeIoU:# Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distanceww = 2 * torch.pow(w2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))hh = 2 * torch.pow(h2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex widthch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex heightc2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squaredcenter_distance_x = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2) / 4center_distance_y = ((b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4center_distance = hh * center_distance_x + ww * center_distance_ydistance = center_distance / c2# Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shapeomiga_w = hh * torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = ww * torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)return iou - distance - 0.5 * shape_costelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou  # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2))  # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps),gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfelif MDPIoU:d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2mpdiou_hw_pow = feat_h ** 2 + feat_w ** 2return iou - d1 / mpdiou_hw_pow - d2 / mpdiou_hw_pow  # MPDIoUif Focal:return iou, torch.pow(inter / (union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

 


四、添加教程

本文代码提到的MPDIoU需要在另一篇文章进行修改一些细节内容,本文的内容以及默认大家修改了我的MPDIoU(不修改会报错)!

另一篇文章的链接:YOLOv9改进策略 | 损失函数篇 | 利用真实边界框损失之MPDIoU助力YOLOv9精度更上一层楼

 


4.1 步骤一

第一步我们需要先找到如下的文件'utils/metrics.py'(这里以YOLOv9的修改损失函数为例,GELAN的需要修改'utils/loss_tal.py'修改教程一致,本文以YOLOv9的为例)。

我们找到如下图所示的代码!


4.2 步骤二

步骤二我们用章节三中的核心代码完全替换上面4.1红框圈出的整个函数(注意是整个函数红框仅仅是圈出了部分的代码因为代码太多不可能全部圈出来)!

修改完的样子如下图所示!

 


4.3 步骤三

我们上面相当于以及在项目内添加了Inner等损失函数,下一部我们教的是大家如何开启Inner的损失函数!

我们需要找到如下的文件'utils/loss_tal_dual.py' 按照图示进行修改!

class BboxLoss(nn.Module):def __init__(self, reg_max, use_dfl=False):super().__init__()self.reg_max = reg_maxself.use_dfl = use_dfldef forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask,h=None, w=None):# iou lossbbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4])  # (b, h*w, 4)pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=False, Inner=True, Focaleriou=False,MDPIoU=False, ShapeIoU=True, EIoU=False, WIoU=False, DIoU=False, Focal=False, GIoU=False,feat_h=h, feat_w=w, alpha=1, gamma=0.5,  eps=1e-7, d=0.00, u=0.95, scale=0.0)if type(iou) is tuple:if len(iou) == 2:# Focus Loss 时返回的是元组类型,进行额外处理loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sumelse:loss_iou = (iou[0] * iou[1] * weight).sum() / target_scores_sumelse:# 正常的损失函数loss_iou = 1.0 - iouloss_iou *= bbox_weightloss_iou = loss_iou.sum() / target_scores_sum# 对应的那个设置为True就开启那个损失函数除了Inner之外其余的都只能单独使用只有Innner可以配合其它损失函数使用# dfl lossif self.use_dfl:dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weightloss_dfl = loss_dfl.sum() / target_scores_sumelse:loss_dfl = torch.tensor(0.0).to(pred_dist.device)return loss_iou, loss_dfl, iou
  对应的那个设置为True就开启那个损失函数除了Inner和Focal之外其余的都只能单独使用只有Inner可以配合其它损失函数使用

 到此我们就修改完成了,上面步骤三以及开启了对应的损失函数机制!


五、全文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv9改进有效涨点专栏,本专栏目前为新开的,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏(目前免费订阅,后期不迷路),关注后续更多的更新~

 专栏地址YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏  

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/312978.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mybatis generate xml 没有被覆盖

添加插件即可 <plugin type"org.mybatis.generator.plugins.UnmergeableXmlMappersPlugin"/>

Qt 系统相关

这里写目录标题 Qt 事件事件介绍事件的处理按键事件单个按键组合按键 ⿏标事件⿏标单击事件⿏标释放事件⿏标双击事件⿏标移动事件滚轮事件 定时器QTimerEvent 类QTimer 类获取系统⽇期及时间 事件分发器概述事件分发器⼯作原理 事件过滤器 Qt ⽂件Qt ⽂件概述输⼊输出设备类⽂…

Py之fireworks-ai:fireworks-ai的简介、安装和使用方法、案例应用之详细攻略

Py之fireworks-ai&#xff1a;fireworks-ai的简介、安装和使用方法、案例应用之详细攻略 目录 fireworks-ai的简介 fireworks-ai的安装和使用方法 1、安装 2、使用方法 # 使用Fireworks客户端库与某个预训练模型进行交互 fireworks-ai的案例应用 LLMs之Agent之Self-ask …

python-flask结合bootstrap实现网页小工具实例-半小时速通版

参考&#xff1a; Python之flask结合Bootstrap框架快速搭建Web应用_支持bootstrap的python软件-CSDN博客 https://blog.csdn.net/lovedingd/article/details/106696832 Bootstrap 警告框 | 菜鸟教程 https://www.runoob.com/bootstrap/bootstrap-alert-plugin.html flask框架…

论文笔记:SmartPlay : A Benchmark for LLMs as Intelligent Agents

iclr 2024 reviewer评分 5688 引入了 SmartPlay&#xff0c;一种从 6 种不同游戏中提取的基准 衡量LLM作为智能体的能力 1 智能代理所需的能力 论文借鉴游戏设计的概念&#xff0c;确定了智能LLM代理的九项关键能力&#xff0c;并为每项能力确定了多个等级&#xff1a; 长文…

(算法版)基于二值图像数字矩阵的距离变换算法

Hi&#xff0c;大家好&#xff0c;我是半亩花海。本项目展示了欧氏距离、城市街区距离和棋盘距离变换的实现方法。通过定义一个距离变换类&#xff0c;对输入图像进行距离变换操作&#xff0c;并生成对应的距离矩阵。在示例中&#xff0c;展示了在一个480x480的全黑背景图像上设…

postman 调试 传base64字符串 原来选xml

上个图 工具类 package org.springblade.common.utils;import com.alibaba.fastjson.JSONObject; import org.springblade.modules.tc.mas.Submit;import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStrea…

【超级简单】vscode进入服务器的docker容器

前提 1、已经运行docker容器 2、已经用vscode链接服务器 在vscode中安装的插件 Dev Containers docker 在容器中安装的依赖 yum install openssh-server yum install openssh-clientsvscode进入服务器的docker容器 找到自己的容器&#xff0c;右键点击&#xff0c;找到…

IP爬虫代理服务器是什么以及为什么使用爬虫代理?

在网络抓取领域&#xff0c;爬虫代理发挥着关键作用。 但它们到底是什么&#xff1f; 从本质上讲&#xff0c;爬虫代理是位于网络抓取工具和目标网站之间的中间服务器。 该中间服务器充当盾牌&#xff0c;提供匿名性&#xff0c;并允许您访问网站并提取数据&#xff0c;而无需透…

python后端相关知识点汇总(十二)

python知识点汇总十二 1、什么是 C/S 和 B/S 架构2、count(1)、count(*)、count(列名)有啥区别&#xff1f;3、如何使用线程池3.1、为什么使用线程池&#xff1f; 4、MySQL 数据库备份命令5、supervisor和Gunicorn6、python项目部署6.1、entrypoint.sh制作6.2、Dockerfile制作6…

React中redux、react-redux、@reduxjs/toolkit状态管理库的使用方式

效果 下载依赖 npm install redux react-redux reduxjs/toolkit --save在src目录下创建文件 创建index.ts文件 import { configureStore } from reduxjs/toolkit import userSlice from ./userReducerconst store configureStore({reducer: {user: userSlice.reducer} }) //…

四川易点慧电子商务抖音小店打造便捷生活新体验

随着互联网的迅猛发展&#xff0c;电子商务已经深入到人们生活的方方面面。在这个大背景下&#xff0c;四川易点慧电子商务抖音小店应运而生&#xff0c;凭借其独特的魅力和创新模式&#xff0c;迅速在电商领域崭露头角&#xff0c;成为了众多消费者追逐的焦点。 抖音小店作为新…

go语言并发实战——日志收集系统(三) 利用sarama包连接KafKa实现消息的生产与消费

环境的搭建 Kafka以及相关组件的下载 我们要实现今天的内容&#xff0c;不可避免的要进行对开发环境的配置&#xff0c;Kafka环境的配置比较繁琐&#xff0c;需要配置JDK,Scala,ZoopKeeper和Kafka&#xff0c;这里我们不做赘述&#xff0c;如果大家不知道如何配置环境&#x…

5.3 mybatis之autoMappingUnknownColumnBehavior作用

文章目录 1. NONE2. WARNING3. FAILING autoMappingUnknownColumnBehavior是< settings >配置下的属性&#xff0c;该属性是指定发现自动映射目标未知列&#xff08;或未知属性类型&#xff09;的行为。就是说当数据库中的字段找不到映射java对象的属性或者与java对象对应…

区块链安全应用----压力测试

通过Caliper进行压力测试程序 1.环境配置 第一步. 配置基本环境 部署Caliper的计算机需要有外网权限&#xff1b;操作系统版本需要满足以下要求&#xff1a;Ubuntu > 16.04、CentOS > 7或MacOS > 10.14&#xff1b;部署Caliper的计算机需要安装有以下软件&#xff…

OpenMesh 网格平均曲率计算

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 根据 Laplace-Beltrami 算子与平均曲率法向的关系: 又根据余切 Laplace-Beltrami 算子的定义: 其中 Ai 为该点邻域面积,取 Voronoi cell 面积如下: 得到

MySQL复合查询

&#x1f4df;作者主页&#xff1a;慢热的陕西人 &#x1f334;专栏链接&#xff1a;MySQL &#x1f4e3;欢迎各位大佬&#x1f44d;点赞&#x1f525;关注&#x1f693;收藏&#xff0c;&#x1f349;留言 本博客主要内容介绍了MySQL中的复合查询 文章目录 MySQL复合查询1.子查…

Since Maven 3.8.1 http repositories are blocked.

编译maven 项目时候报错提示下面信息&#xff1a; Since Maven 3.8.1 http repositories are blocked.Possible solutions: - Check that Maven settings.xml does not contain http repositories - Check that Maven pom files do not contain http repository http://XXXXXX:…

齐次变换矩阵、欧拉角

齐次变换矩阵 因为老是忘记齐次变换矩阵的含义以及方向&#xff0c;每次推导公式都很费劲&#xff0c;写下这篇文章用于快速回顾齐次变换矩阵。 表示的是&#xff1a;坐标系A到坐标系B的齐次变换矩阵&#xff0c;也是坐标系B在坐标系A下的位姿。 对于这个矩阵&#xff0c;有三…

.net9 AOT编绎生成标准DLL,输出API函数教程-中国首创

1&#xff0c;安装VS2022预览版&#xff08;Visual Studio Preview&#xff09; https://visualstudio.microsoft.com/zh-hans/vs/preview/#download-preview 2&#xff0c;选择安装组件&#xff1a;使用C的桌面开发 和 .NET桌面开发 ------------------------------------- …