基于Python实现的推箱子小游戏

Python贪吃蛇小游戏实现:

     推箱子曾经在我们的童年给我们带来了很多乐趣。推箱子这款游戏现在基本上没人玩了,甚至在新一代人的印象中都已毫无记忆了。。。但是,这款游戏可以在一定程度上锻炼自己的编程能力。

运行效果如图所示:

    游戏关卡有点难哦,码友们一起来挑战一下吧。

代码如下:

import pygame, sys, os
from pygame.locals import *
from collections import deque


def to_box(level, index):
   if level[index] == '-' or level[index] == '@':
       level[index] = '$'
   else:
       level[index] = '*'


def to_man(level, i):
   if level[i] == '-' or level[i] == '$':
       level[i] = '@'
   else:
       level[i] = '+'


def to_floor(level, i):
   if level[i] == '@' or level[i] == '$':
       level[i] = '-'
   else:
       level[i] = '.'


def to_offset(d, width):
   d4 = [-1, -width, 1, width]
   m4 = ['l', 'u', 'r', 'd']
   return d4[m4.index(d.lower())]

def b_manto(level, width, b, m, t):
   maze = list(level)
   maze[b] = '#'
   if m == t:
       return 1
   queue = deque([])
   queue.append(m)
   d4 = [-1, -width, 1, width]
   m4 = ['l', 'u', 'r', 'd']
   while len(queue) > 0:
       pos = queue.popleft()
       for i in range(4):
           newpos = pos + d4[i]
           if maze[newpos] in ['-', '.']:
               if newpos == t:
                   return 1
               maze[newpos] = i
               queue.append(newpos)
   return 0

def b_manto_2(level, width, b, m, t):
   maze = list(level)
   maze[b] = '#'
   maze[m] = '@'
   if m == t:
       return []
   queue = deque([])
   queue.append(m)
   d4 = [-1, -width, 1, width]
   m4 = ['l', 'u', 'r', 'd']
   while len(queue) > 0:
       pos = queue.popleft()
       for i in range(4):
           newpos = pos + d4[i]
           if maze[newpos] in ['-', '.']:
               maze[newpos] = i
               queue.append(newpos)
               if newpos == t:
                   path = []
                   while maze[t] != '@':
                       path.append(m4[maze[t]])
                       t = t - d4[maze[t]]
                   return path

   return []

class Sokoban:
   def __init__(self):
       self.level = list(
           '----#####--------------#---#--------------#$--#------------###--$##-----------#--$-$-#---------###-#-##-#---#######---#-##-#####--..##-$--$----------..######-###-#@##--..#----#-----#########----#######--------')
       self.w = 19
       self.h = 11
       self.man = 163
       self.hint = list(self.level)
       self.solution = []
       self.push = 0
       self.todo = []
       self.auto = 0
       self.sbox = 0
       self.queue = []

   def draw(self, screen, skin):
       w = skin.get_width() / 4
       offset = (w - 4) / 2
       for i in range(0, self.w):
           for j in range(0, self.h):
               if self.level[j * self.w + i] == '#':
                   screen.blit(skin, (i * w, j * w), (0, 2 * w, w, w))
               elif self.level[j * self.w + i] == '-':
                   screen.blit(skin, (i * w, j * w), (0, 0, w, w))
               elif self.level[j * self.w + i] == '@':
                   screen.blit(skin, (i * w, j * w), (w, 0, w, w))
               elif self.level[j * self.w + i] == '$':
                   screen.blit(skin, (i * w, j * w), (2 * w, 0, w, w))
               elif self.level[j * self.w + i] == '.':
                   screen.blit(skin, (i * w, j * w), (0, w, w, w))
               elif self.level[j * self.w + i] == '+':
                   screen.blit(skin, (i * w, j * w), (w, w, w, w))
               elif self.level[j * self.w + i] == '*':
                   screen.blit(skin, (i * w, j * w), (2 * w, w, w, w))
               if self.sbox != 0 and self.hint[j * self.w + i] == '1':
                   screen.blit(skin, (i * w + offset, j * w + offset), (3 * w, 3 * w, 4, 4))

   def move(self, d):
       self._move(d)
       self.todo = []

   def _move(self, d):
       self.sbox = 0
       h = to_offset(d, self.w)
       h2 = 2 * h
       if self.level[self.man + h] == '-' or self.level[self.man + h] == '.':
           # move
           to_man(self.level, self.man + h)
           to_floor(self.level, self.man)
           self.man += h
           self.solution += d
       elif self.level[self.man + h] == '*' or self.level[self.man + h] == '$':
           if self.level[self.man + h2] == '-' or self.level[self.man + h2] == '.':
               # push
               to_box(self.level, self.man + h2)
               to_man(self.level, self.man + h)
               to_floor(self.level, self.man)
               self.man += h
               self.solution += d.upper()
               self.push += 1

   def undo(self):
       if self.solution.__len__() > 0:
           self.todo.append(self.solution[-1])
           self.solution.pop()

           h = to_offset(self.todo[-1], self.w) * -1
           if self.todo[-1].islower():
               # undo a move
               to_man(self.level, self.man + h)
               to_floor(self.level, self.man)
               self.man += h
           else:
               # undo a push
               to_floor(self.level, self.man - h)
               to_box(self.level, self.man)
               to_man(self.level, self.man + h)
               self.man += h
               self.push -= 1

   def redo(self):
       if self.todo.__len__() > 0:
           self._move(self.todo[-1].lower())
           self.todo.pop()

   def manto(self, x, y):
       maze = list(self.level)
       maze[self.man] = '@'
       queue = deque([])
       queue.append(self.man)
       d4 = [-1, -self.w, 1, self.w]
       m4 = ['l', 'u', 'r', 'd']
       while len(queue) > 0:
           pos = queue.popleft()
           for i in range(4):
               newpos = pos + d4[i]
               if maze[newpos] in ['-', '.']:
                   maze[newpos] = i
                   queue.append(newpos)
       # print str(maze)
       t = y * self.w + x
       if maze[t] in range(4):
           self.todo = []
           while maze[t] != '@':
               self.todo.append(m4[maze[t]])
               t = t - d4[maze[t]]
       # print self.todo
       self.auto = 1

   def automove(self):
       if self.auto == 1 and self.todo.__len__() > 0:
           self._move(self.todo[-1].lower())
           self.todo.pop()
       else:
           self.auto = 0

   def boxhint(self, x, y):
       d4 = [-1, -self.w, 1, self.w]
       m4 = ['l', 'u', 'r', 'd']
       b = y * self.w + x
       maze = list(self.level)
       to_floor(maze, b)
       to_floor(maze, self.man)
       mark = maze * 4
       size = self.w * self.h
       self.queue = []
       head = 0
       for i in range(4):
           if b_manto(maze, self.w, b, self.man, b + d4[i]):
               if len(self.queue) == 0:
                   self.queue.append((b, i, -1))
               mark[i * size + b] = '1'
       # print self.queue
       while head < len(self.queue):
           pos = self.queue[head]
           head += 1
           # print pos
           for i in range(4):
               if mark[pos[0] + i * size] == '1' and maze[pos[0] - d4[i]] in ['-', '.']:
                   # print i
                   if mark[pos[0] - d4[i] + i * size] != '1':
                       self.queue.append((pos[0] - d4[i], i, head - 1))
                       for j in range(4):
                           if b_manto(maze, self.w, pos[0] - d4[i], pos[0], pos[0] - d4[i] + d4[j]):
                               mark[j * size + pos[0] - d4[i]] = '1'
       for i in range(size):
           self.hint[i] = '0'
           for j in range(4):
               if mark[j * size + i] == '1':
                   self.hint[i] = '1'
       # print self.hint

   def boxto(self, x, y):
       d4 = [-1, -self.w, 1, self.w]
       m4 = ['l', 'u', 'r', 'd']
       om4 = ['r', 'd', 'l', 'u']
       b = y * self.w + x
       maze = list(self.level)
       to_floor(maze, self.sbox)
       to_floor(maze, self.man)  # make a copy of working maze by removing the selected box and the man
       for i in range(len(self.queue)):
           if self.queue[i][0] == b:
               self.todo = []
               j = i
               while self.queue[j][2] != -1:
                   self.todo.append(om4[self.queue[j][1]].upper())
                   k = self.queue[j][2]
                   if self.queue[k][2] != -1:
                       self.todo += b_manto_2(maze, self.w, self.queue[k][0], self.queue[k][0] + d4[self.queue[k][1]],
                                              self.queue[k][0] + d4[self.queue[j][1]])
                   else:
                       self.todo += b_manto_2(maze, self.w, self.queue[k][0], self.man,
                                              self.queue[k][0] + d4[self.queue[j][1]])
                   j = k
               # print self.todo
               self.auto = 1
               return
       print('not found!')

   def mouse(self, x, y):
       if x >= self.w or y >= self.h:
           return
       m = y * self.w + x
       if self.level[m] in ['-', '.']:
           if self.sbox == 0:
               self.manto(x, y)
           else:
               self.boxto(x, y)
       elif self.level[m] in ['$', '*']:
           if self.sbox == m:
               self.sbox = 0
           else:
               self.sbox = m
               self.boxhint(x, y)
       elif self.level[m] in ['-', '.', '@', '+']:
           self.boxto(x, y)


def main():
   # start pygame
   pygame.init()
   screen = pygame.display.set_mode((400, 300))

   # load skin
   skinfilename = os.path.join('borgar.png')
   try:
       skin = pygame.image.load(skinfilename)
   except pygame.error as msg:
       print('cannot load skin')
       raise SystemExit(msg)
   skin = skin.convert()

   # print skin.get_at((0,0))
   # screen.fill((255,255,255))
   screen.fill(skin.get_at((0, 0)))
   pygame.display.set_caption('推箱子')

   # create Sokoban object
   skb = Sokoban()
   skb.draw(screen, skin)

   #
   clock = pygame.time.Clock()
   pygame.key.set_repeat(200, 50)

   # main game loop
   while True:
       clock.tick(60)

       if skb.auto == 0:
           for event in pygame.event.get():
               if event.type == QUIT:
                   # print skb.solution
                   pygame.quit()
                   sys.exit()
               elif event.type == KEYDOWN:
                   if event.key == K_LEFT:
                       skb.move('l')
                       skb.draw(screen, skin)
                   elif event.key == K_UP:
                       skb.move('u')
                       skb.draw(screen, skin)
                   elif event.key == K_RIGHT:
                       skb.move('r')
                       skb.draw(screen, skin)
                   elif event.key == K_DOWN:
                       skb.move('d')
                       skb.draw(screen, skin)
                   elif event.key == K_BACKSPACE:
                       skb.undo()
                       skb.draw(screen, skin)
                   elif event.key == K_SPACE:
                       skb.redo()
                       skb.draw(screen, skin)
               elif event.type == MOUSEBUTTONUP and event.button == 1:
                   mousex, mousey = event.pos
                   mousex /= (skin.get_width() / 4)
                   mousey /= (skin.get_width() / 4)
                   skb.mouse(mousex, mousey)
                   skb.draw(screen, skin)
       else:
           skb.automove()
           skb.draw(screen, skin)

       pygame.display.update()
       pygame.display.set_caption(skb.solution.__len__().__str__() + '/' + skb.push.__str__() + ' - 推箱子')


if __name__ == '__main__':
   main()

图片素材:

完整素材及全部代码

代码已上传csdn,0积分下载,觉得这片博文有用请留下你的点赞。

基于Python实现的推箱子小游戏
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/313889.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

锂电池寿命预测 | Matlab基于GRU门控循环单元的锂电池寿命预测

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 锂电池寿命预测 | Matlab基于GRU门控循环单元的锂电池寿命预测 Matlab基于GRU的锂电池剩余寿命预测 基于GRU的锂电池剩余寿命预测&#xff08;单变量&#xff09; 运行环境Matlab2020及以上 锂电池的剩余寿命预测是…

【前后端】django前后端交互

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、django是什么二、django前后端交互指引三、总结 前言 随着开发语言及人工智能工具的普及&#xff0c;使得越来越多的人会主动学习使用一些开发语言&#x…

面试:JVM垃圾回收

一、三种垃圾回收算法 1、标记清除&#xff08;已废弃&#xff09; 找到根对象&#xff08;局部变量正在引用的对象、静态变量正在引用的对象&#xff09;&#xff1b;沿着根对象的引用链&#xff0c;查看当前的对象是否被根对象所引用&#xff0c;若被引用&#xff0c;则加上…

rabbitmq 使用SAC队列实现顺序消息

rabbitmq 使用SAC队列实现顺序消息 前提 SAC: single active consumer, 是指如果有多个实例&#xff0c;只允许其中一个实例消费&#xff0c;其他实例为空闲 目的 实现消息顺序消费&#xff0c;操作&#xff1a; 创建4个SAC队列,消息的路由key 取队列个数模&#xff0c;这…

[Java EE] 多线程(五):单例模式与阻塞队列

1. 单例模式 单例模式是校招中最长考的设计模式之一,首先我们来谈一谈什么是设计模式: 设计模式就好像象棋中的棋谱一样,如果红方走了什么样的局势,黑方就有一定地固定地套路,来应对这样的局势,按照固定地套路来,可以保证在该局势下不会吃亏. 软件开发也是同样的道理,有很多…

BGP的基本配置

l 按照以下步骤配置BGP协议&#xff1a; 第1步&#xff1a;设备基本参数配置&#xff0c;AS内配置IGP确保内部网络连通性&#xff1b; l 配置IGP&#xff08;OSPF协议等&#xff09;路由解决peer对等体的源和目标IP之间连通性&#xff0c;确保peer之间TCP&#xff08;179&a…

【后端】python与django的开发环境搭建指南

安装Git 双击Git 客户端安装文件&#xff0c;在安装页面&#xff0c;单击“Next” 在安装路径选择页面&#xff0c;保持默认&#xff0c;单击“Next” 在功能组件选择页面&#xff0c;保持默认&#xff0c;单击“Next” 在开始菜单文件夹设置页面&#xff0c;保持默认&am…

好看到爆炸的弹窗公告源码

源码介绍 好看到爆炸的弹窗公告源码&#xff0c;源码由HTMLCSSJS组成&#xff0c;记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面&#xff0c; 源码截图 源码下载 好看到爆炸的弹窗公告源码

【Elasticsearch】Elasticsearch 从入门到精通(二):基础使用

《Elasticsearch 从入门到精通》共包含以下 2 2 2 篇文章&#xff1a; Elasticsearch 从入门到精通&#xff08;一&#xff09;&#xff1a;基本介绍Elasticsearch 从入门到精通&#xff08;二&#xff09;&#xff1a;基础使用 &#x1f60a; 如果您觉得这篇文章有用 ✔️ 的…

SpringBoot+vue开发记录(二)

说明&#xff1a;本篇文章的主要内容为SpringBoot开发中后端的创建 项目创建: 1. 新建项目&#xff1a; 如下&#xff0c;这样简单创建就行了&#xff0c;JDK什么的就先17&#xff0c;当然1.8也是可以的&#xff0c;后面可以改。 这样就创建好了&#xff1a; 2. pom.xml…

光伏无人机:巡检无人机解决巡检难题

随着科技的飞速发展&#xff0c;无人机技术已经广泛应用于各个领域&#xff0c;其中光伏无人机在解决光伏电站巡检难题方面发挥了重要作用。光伏无人机以其高效、精准、安全的特点&#xff0c;为光伏电站的巡检工作带来了革命性的变革。 光伏电站通常位于广阔的户外场地&#x…

如何理解自然语言处理中的位置编码(Positional Encoding)

在自然语言处理和特别是在使用Transformer模型中,位置编码(Positional Encoding)是一个关键的概念。它们的作用是为模型提供序列中各个元素的位置信息。由于Transformer架构本身并不像循环神经网络(RNN)那样具有处理序列的固有能力,位置编码因此显得尤为重要。 为什么需…

7天入门Android开发之第1天——初识Android

一、Android系统 1.Linux内核层&#xff1a; 这是安卓系统的底层&#xff0c;它提供了基本的系统功能&#xff0c;如内存管理、进程管理、驱动程序模型等。安卓系统构建在Linux内核之上&#xff0c;借助于Linux的稳定性和安全性。 2.系统运行库层&#xff1a; 这一层包括了安卓…

一次违法网站的渗透经历

0x01 前言 在一次攻防演练中&#xff0c;我发现了一个有趣的渗透路径。在信息收集阶段&#xff0c;我注意到目标网站和用户资产网站共享相同的IP网段。这意味着它们可能在同一台服务器上托管&#xff0c;或者至少由同一家互联网服务提供商管理。这种情况为我们的渗透测试提供了…

Linux命令继续学习

which命令&#xff0c;找到各种命令程序所处在的位置 语法&#xff1a;which查找的命令 那么对于我们想查找其他类型文件所在的位置&#xff0c;我们可以用到find命令 find命令 选项为-name&#xff0c;表示按照文件名进行查找 find命令中通配符 find命令和前面rm命令一样&…

学习Rust第14天:HashMaps

今天我们来看看Rust中的hashmaps&#xff0c;在 std::collections crate中可用&#xff0c;是存储键值对的有效数据结构。本文介绍了创建、插入、访问、更新和迭代散列表等基本操作。通过一个计算单词出现次数的实际例子&#xff0c;我们展示了它们在现实世界中的实用性。Hashm…

xgp加速器免费 微软商店xgp用什么加速器

2001年11月14日深夜&#xff0c;比尔盖茨亲自来到时代广场&#xff0c;在午夜时分将第一台Xbox交给了来自新泽西的20岁年轻人爱德华格拉克曼&#xff0c;后者在回忆中说&#xff1a;“比尔盖茨就是上帝。”性能超越顶级PC的Xbox让他们趋之若鹜。2000年3月10日&#xff0c;微软宣…

ScriptableObject数据容器讲解

概述 是Unity提供的一个用于创建可重用的数据容器或逻辑的基类。 ScriptableObject 是继承自 UnityEngine.Object 的一个类&#xff0c;但与普通的 MonoBehaviour 不同&#xff0c;它不能附加到GameObject上作为组件。 相反&#xff0c;ScriptableObject 通常用于存储和管理…

意法半导体STM32F407VET6TR单片机优缺点、参数、应用和引脚封装

ST(意法半导体)的型号STM32F407VET6TR属于32位MCU微控制器&#xff0c;基于高性能的ArmCortex-M4 32位RISC核心&#xff0c;工作频率高达168MHz。单精度浮点单元(FPU)用于Cortex-M4核心&#xff0c;支持所有Arm单精度数据处理指令和数据类型。它还实现了一套完整的DSP指令和一个…

就业班 第三阶段(负载均衡) 2401--4.18 day2 LVS-DR模式

3、LVS/DR 模式 实验说明&#xff1a; 1.网络使用NAT模式 2.DR模式要求Director DIP 和 所有RealServer RIP必须在同一个网段及广播域 3.所有节点网关均指定真实网关 主机名ip系统用途client172.16.147.1mac客户端lvs-server172.16.147.154centos7.5分发器real-server1172.16.…