GPB | RegVar:基于深度神经网络的非编码区突变功能预测新方法

fcdfad754a4ae5d87bc97338abe7c82a.png

Genomics, Proteomics & Bioinformatics (GPB)发表了由军事医学研究院辐射医学研究所张成岗研究员周钢桥研究员卢一鸣副研究员团队完成的题为“RegVar: Tissue-specific Prioritization of Noncoding Regulatory Variants”的方法文章。我们的“要文译荐”栏目很高兴邀请到文章的通讯作者张成岗研究员为大家介绍RegVar方法的建立与应用。

要点介绍

研究问题:

基于全基因组测序的研究工作,研究人员已在人类基因组上发现了超过8000万个基因突变位点,在单个个体基因组上也存在400~500万个突变位点。如何对这些海量突变位点在个体疾病与性状产生过程中的作用进行系统研究,仍然是基因组学与遗传学领域的一大难题。此外,由于基因组上绝大部分突变位于非编码区,可通过影响基因转录和翻译过程中的不同生物事件来发挥作用,对其进行准确的功能注释和靶基因鉴定仍是一重大挑战。

研究方法:

利用来自基因型-组织表达(genotype-tissue expression, GTEx)研究项目的组织类型特异性表达数量性状基因座(expression quantitative trait loci, eQTL)数据,采用深度神经网络(deep neural network, DNN)的计算框架,对发挥调控功能的SNP位点与其靶基因位点的多种分子特征进行整合建模分析,包括其序列特征、表观组学特征和进化保守性特征等,在17种人体组织中构建了组织特异性的非编码区调控型突变预测模型,并在多种条件下对模型的预测性能进行了充分评估。

主要结果:

我们建立了一种基于DNN的计算框架RegVar,它可以准确预测非编码区调控型突变的组织特异性调控功能,并对其靶基因进行高准确性鉴定。通过学习多种人类组织中“遗传位点-基因表达”关联的分子特征,RegVar在多种情景下表现出对非编码区调控型突变功能预测的优异性能。我们期待RegVar能够帮助深入理解人类基因组的遗传结构,并有助于揭示复杂性状和疾病背后新的分子机制。

背景和研究对象

来自全基因组关联分析(genome-wide association studies, GWAS)的研究结果显示,大量变异位点与疾病表型之间存在显著关联,其中绝大部分位于基因组的非编码区。非编码区的变异位点不改变编码蛋白的序列和功能,主要通过调控基因的表达来发挥效应。如何对这些具有调控功能的变异位点进行鉴定和注释是医学遗传学研究中的一大挑战。

以往针对非编码区突变效应的研究大多关注于致病型突变的注释,对这些方法的评测结果显示其并不适用于调控型突变的鉴定。与致病型突变相比,调控型突变的突变效应更为微弱,使得其鉴定更加困难。调控元件与其调控的靶基因之间通常具有较远的基因组距离,如何在远距离上将调控元件上的变异位点与靶基因联系起来,是本领域的研究难点。此外,调控型突变的作用往往具有组织或细胞类型特异性,对不同组织类型中的变异位点进行特异性注释,也具有十分重要的生物学意义。

方法建立

RegVar采用DNN算法框架,利用来自GTEx研究项目的eQTL数据进行建模分析,结合了突变位点及其所调控的靶基因的序列、表观组学和进化保守性等特征,在17种人体组织中构建了组织特异性的非编码区调控型突变预测模型。为了对方法的稳健性与有效性进行充分评估,构建了多种情景下的阴性数据集对RegVar的预测性能进行测试,包括:(1)随机突变组,即选择基因组上随机阴性SNP位点与靶基因构成阴性数据集;(2)镜像突变组,即选择基因组上与阳性突变位点关于靶基因镜像对称位置的阴性SNP位点与靶基因构成阴性数据集;(3)邻近突变组,即选择基因组上阳性突变位点附近的阴性SNP位点与靶基因构成阴性数据集;(4)随机基因组,即选择基因组上阳性突变位点1Mb之内的随机基因与阳性突变构成阴性数据集。对这些条件下的阴性数据集进行预测评估,发现RegVar均表现出良好的预测性能,说明RegVar具有较好的稳健性与有效性(图1)。与以往方法相比,RegVar也表现出更高的预测准确性。

e36a26566c5a420ae81b1ce65227e75f.jpeg

图1  在不同条件下RegVar与已有方法在肝脏eQTL数据上的预测表现

RegVar应用性分析

在可应用性方面,采用RegVar对22号常染色体上所有SNP位点进行了调控概率的注释,结果显示其中存在大量具有高调控功能概率的变异位点,可能影响到特定靶基因的表达(图2)。在真实的eQTL研究中,这些位点并不能被成功检测出来,可能是由于这些位点的调控效应十分微弱而导致的,此外也可能受到样本量与统计效力等限制因素的影响。

be8c38c52ebec6c15c97e624f4c824f3.jpeg

图2  RegVar对22号常染色体上SNP位点进行调控概率预测

随后,使用RegVar模型对全基因组中随机选取的变异位点进行了组织特异性预测分析,鉴定到跨组织与组织特异性调控型突变位点(图3)。对其进行表观特征注释,结果显示,跨组织调控型突变位点往往带有多个组织的启动子表观修饰,而组织特异性调控型突变位点则大多带有组织特异性的增强子表观修饰(图3)。

d3427dfb5ede48505d9ccb4830ada8e0.jpeg

图3  RegVar在全基因组上鉴定跨组织与组织特异性调控型突变位点

为了进一步探究RegVar模型的可拓展性,利用人类基因突变数据库(human gene mutation database, HGMD)中的致病型突变位点信息,利用相似的研究框架构建了致病型突变预测模型。与已发表的同类方法相比,RegVar可达到同等程度的预测性能。RegVar同时提供了可在线访问的网页应用(https://regvar.omic.tech/)和可下载的模型程序包供相关领域的研究者使用和参考。

222c0378970fb154b13c9cbe2bf33ff9.png

扫描二维码获取链接

总结和讨论

非编码区突变能够通过多种复杂机制在许多疾病和复杂性状产生过程中发挥重要作用,然而如何将非编码区突变,尤其是长距离突变,与其靶基因联系起来一直是一个巨大挑战。目前已经有研究者开发了许多方法对非编码区突变进行功能注释,尽管这些方法在基本假设和具体算法框架上各不相同,但它们主要关注于致病型突变作用。因此,大量具有微弱调节作用的突变将被忽视。我们展示了RegVar在不同情景下对调控型突变进行功能预测的优异性能,RegVar有望应用于候选突变位点的筛选、靶基因的鉴定等研究中,为揭示基因组中复杂的调控关系以及阐明复杂性状的分子成因提供帮助。

审校人:

GPB青年编委侯娅丽

文章编译来源:

Lu H, Ma L, Quan C, Li L, Lu Y, Zhou G, Zhang C. RegVar: Tissue-specific Prioritization of Noncoding Regulatory Variants. Genomics Proteomics Bioinformatics 2023;21(2):385-395. 

英文全文详见:

https://www.sciencedirect.com/science/article/pii/S1672022921002564

作者资助信息:

军事科学院军事医学研究院辐射医学研究所张成岗研究员周钢桥研究员卢一鸣副研究员为论文的共同通讯作者,该所的路浩助理研究员为论文的第一作者,马露雨权诚李磊为文章共同作者。该研究得到了国家自然科学基金、北京市科技新星计划的资助。

GPB论文:

RegVar: Tissue-specific Prioritization of Noncoding Regulatory Variants

长按并识别二维码,阅读原文

0d2d8d1f9432680bffc382f92772c06e.png

97edc70b40fe26c9e67d6f12e55a8056.png

     相关推荐     

GPB | CARMEN:基因表达调控相关非编码变异的精准功能预测算法

GPB | NetGO 3.0: 蛋白语言大模型有效提升蛋白质功能预测性能

GPB | GREPore-seq:通过长片段PCR和纳米孔测序高效检测基因编辑后突变的实验流程

   About GPB   

Genomics, Proteomics & Bioinformatics(基因组蛋白质组与生物信息学报,简称GPB)于2003年创刊,是由中国科学院主管、中国科学院北京基因组研究所(国家生物信息中心)与中国遗传学会共同主办的英文学术期刊,由牛津大学出版社金色开放获取(Gold Open Access)出版。刊载来自世界范围内组学、生物信息学及相关领域的优质稿件。现为中国科学引文数据库(CSCD)和中国科技论文与引文数据库(CSTPCD)核心期刊,被SCIE、PubMed/MEDLINE、Scopus等数据库收录。2023年公布的官方数据显示,CiteScore为11.7;2年和5年Impact Factor分别为9.5和10.1,分别排名WoS遗传学领域12/171和13/171;2022 JCI为2.08,排名WoS遗传学领域10/189。期刊由科技部等七部门联合实施的“中国科技期刊卓越行动计划“资助(2019–2023)。

高颜值免费 SCI 在线绘图(点击图片直达)

7aa93e641da47ad070832f2522b103c0.png

最全植物基因组数据库IMP (点击图片直达)

039899faa0c742f0b5067bbbc6262c9a.png

往期精品(点击图片直达文字对应教程)

ac7c826828c2457cc76ab0d594ca6213.jpeg

237ef6b61dee6dbbf028e03f008d6b6d.jpeg

d7087f423a71c7998ef382ca30756a3a.jpeg

6b303feb01902cf9b29c65590f3b35d3.jpeg

c0f9bffe5e87cd1747cbd79b49917a90.jpeg

57870c4f4f44d4493f607541213ff775.jpeg

a4ccffbbfbf477519b2ae4e55f2acb29.jpeg

0ad3737513b0516bcb3bf9dacfe1ca83.jpeg

4692884a59cefd8d19d67f8cef5e5599.jpeg

833b176a1faf81328a0116aee7ffbcce.jpeg

f52b7ef475cba95e5805174534186317.jpeg

7a5ea94f72dcdabbef67187dc01312d5.jpeg

7a8da0faf00cc63a842bed2890633971.png

64e2622433b30462763e0bdf3cbfc6c6.png

29877e1d03bc2db8a827bf5812dff3f4.png

ebe327c91d65063ae37abbb3dc88a2b8.png

da6ba79cd3c8a701512757a06edfb334.jpeg

fb54a88df76387b366320712b6c453a9.jpeg

590b2d63ac3b152bbafbffd71e2aaa28.jpeg

69d5a9cded79c59e4d2f5e7a79c9dd69.jpeg

c1c55a610fbbde6eb2cf5d11d150273d.png

7b31f8d0c5173e8f5acb31b75ab14ec1.png

3cace33fef0e7d123f6b75ab16a27455.jpeg

2252962a368a4694b6f0200e50820077.png

571c38b5caed88a3001c45a4e8074e25.png

10d746eefac37af09ab2c2448f7f0b63.jpeg

205064660d0a9bac6979ab766bbf2f4d.png

415f06f6e39310f30fe07b704e001adc.png

机器学习

605c74eb2f1103e3929f6d8cf2436fb4.jpeg

49177c2edb9dbef4b55703138758551e.jpeg

204c2baed2a886beb5d4d872936612da.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/313961.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Redis 开发】一人一单,超卖问题(悲观锁,乐观锁,分布式锁)

锁 悲观锁乐观锁第一种:版本号法第二种:CAS法实现乐观锁 悲观锁与乐观锁的比较 一人一单分布式锁Redis实现分布式锁 悲观锁 认为线程问题一定会发生,因此在操作数据库之前先获取锁,确保线程串行执行,例如Synchronized…

【Leetcode】vector刷题

🔥个人主页:Quitecoder 🔥专栏:Leetcode刷题 目录 1.只出现一次的数字2.杨辉三角3.删除有序数组中的重复项4.只出现一次的数字II5.只出现一次的数字III6.电话号码的字母组合 1.只出现一次的数字 题目链接:136.只出现一…

HCIP-Datacom-ARST必选题库_01_ACL【7道题】

一、单选 1.下面是一台路由器的部分配置,关于该配置描述正确的是: 源地址为1.1.1.1的数据包匹配第一条ACL语句rule 0,匹配规则为允许 源地址为1.1.1.3的数据包匹配第三条ACL语句rule 2,匹配规则为拒绝 源地址为1.1.1.4的数据包匹配第四条ACL语句rule 3,匹配规则为允…

Scala 05 —— 函数式编程底层逻辑

Scala 05 —— 函数式编程底层逻辑 该文章来自2023/1/14的清华大学交叉信息学院助理教授——袁洋演讲。 文章目录 Scala 05 —— 函数式编程底层逻辑函数式编程假如...副作用是必须的?函数的定义函数是数据的函数,不是数字的函数如何把业务逻辑做成纯函…

python爬虫学习------scrapy第二部分(第三十天)

🎈🎈作者主页: 喔的嘛呀🎈🎈 🎈🎈所属专栏:python爬虫学习🎈🎈 ✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天…

底层逻辑(1) 是非对错

底层逻辑(1) 是非对错 关于本书 这本书的副标题叫做:看清这个世界的底牌。让我想起电影《教父》中的一句名言:花半秒钟就看透事物本质的人,和花一辈子都看不清事物本质的人,注定是截然不同的命运。 如果你看过梅多丝的《系统之美…

数据挖掘实验(Apriori,fpgrowth)

Apriori:这里做了个小优化,比如abcde和adcef自连接出的新项集abcdef,可以用abcde的位置和f的位置取交集,这样第n项集的计算可以用n-1项集的信息和数字本身的位置信息计算出来,只需要保存第n-1项集的位置信息就可以提速…

2024年巴黎奥运会临近,中国义乌又爆弹了?网友:这就是硬核实力

奥运订单热潮涌动,中国制造不可或缺 随着巴黎奥运会脚步的日益临近,中国义乌再次聚焦全球视野。 近日,国货探访浙江义乌国际商贸城,发现众多蕴含法国元素的商品被置于显眼位置,吸引众多采购商纷至沓来,争…

android脱壳:一种使用native进行抽取壳脱壳的方法,native版本的frida-fart

前言 写rxposed的时候,搞了很多模块,其中有一个远程调用脱壳的,但是当时使用的是rmi远程调用,因为一些问题无法使用,可能是对抗问题,也有可能是技术问题,所以我又换了一种远程调用方式。 概述…

云原生的基石:containerd引领未来容器发展趋势

文章目录 一、Containerd简介:容器技术的心脏二、Containerd核心原理解析三、Containerd与Docker的关系四、Containerd在云原生应用部署中的作用五、Containerd的扩展性和插件机制六、Containerd的安全特性七、Containerd的性能优化八、Containerd的社区和生态系统九…

【51单片机项目】基于51单片机自制多功能小键盘/模拟USB键盘【附源码】(STC89C52RC+CH9328)

目录 一、效果展示 二、创作灵感 三、硬件电路 注意事项 工作原理 四、源码 main.c 五、附录 CH9328工作原理 CH9328的模式选择 ​编辑 全键盘键码值表 参考链接 一、效果展示 该小键盘具有三种功能: 1、自动输入开机密码 2、每隔一段时间自动按下ct…

通用大模型研究重点之五:llama family

LLAMA Family decoder-only类型 LLaMA(Large Language Model AI)在4月18日公布旗下最大模型LLAMA3,参数高达4000亿。目前meta已经开源了80亿和700亿版本模型,主要升级是多模态、长文本方面工作。 模型特点:采用标准的…

Unreal Engine创建Plugin

打开UE工程,点击编辑,选择插件 点击“新插件”按钮,选择“空白选项”填入插件名字"MultiPlayerPlugin",填入插件作者、描述,点击“创建插件”按钮打开C工程,即可看到插件目录,编译C工…

【网络安全】安全事件管理处置 — 安全事件处置思路指导

专栏文章索引:网络安全 有问题可私聊:QQ:3375119339 目录 一、处理DDOS事件 1.准备工作 2.预防工作 3.检测与分析 4.限制、消除 5.证据收集 二、处理恶意代码事件 1.准备 2.预防 3.检测与分析 4.限制 5.证据收集 6.消除与恢复 …

游戏新手村18:游戏广告渠道与广告形式

上文我们说到,渠道为王,渠道可以为我们带来流量和用户,进而带来收入。我们可以通过哪些渠道导入用户呢?每个渠道有哪些优劣呢?在进行游戏营销推广的时候我们该如何选择呢? 根据付费性质,我们可…

鸿蒙ArkUI实战开发-如何通过上下滑动实现亮度和音量调节

场景说明 在音视频应用中通常可以通过上下滑动来调节屏幕亮度和音量大小,本例即为大家介绍如何实现上述UI效果。 说明: 由于当前亮度和音量调节功能仅对系统应用开发,所以本例仅讲解UI效果的实现。 效果呈现 本例效果如下: 当在…

iOS - 多线程-GCD-队列组

文章目录 iOS - 多线程-GCD-队列组1. 队列组1.1 基本使用步骤 iOS - 多线程-GCD-队列组 开发过程中,有时候想实现这样的效果 多个任务并发执行所有任务执行完成后,进行下一步处理(比如回到主线程刷新UI) 1. 队列组 可以使用GC…

区间图着色问题:贪心算法设计及实现

区间图着色问题:贪心算法设计及实现 1. 问题定义2. 贪心算法设计2.1 活动排序2.2 分配教室2.3 算法终止 3. 伪代码4. C语言实现5. 算法分析6. 结论7. 参考文献 在本文中,我们将探讨如何使用贪心算法解决一个特定的资源分配问题,即区间图着色问…

ruby 配置代理 ip(核心逻辑)

在 Ruby 中配置代理 IP,可以通过设置 Net::HTTP 类的 Proxy 属性来实现。以下是一个示例: require net/http// 获取代理Ip:https://www.kuaidaili.com/?refrg3jlsko0ymg proxy_address 代理IP:端口 uri URI(http://www.example.com)Net:…

【002_音频开发_基础篇_Linux音频架构简介】

002_音频开发_基础篇_Linux音频架构简介 文章目录 002_音频开发_基础篇_Linux音频架构简介创作背景Linux 音频架构ALSA 简介ASoC 驱动硬件架构软件架构MachinePlatformCodec ASoC 驱动 PCMALSA设备文件结构 ALSA 使用常用概念alsa-libALSA Open 流程ALSA Write 流程2种写入方法…