Kafka 生产者应用解析

目录

1、生产者消息发送流程

1.1、发送原理

2、异步发送 API

2.1、普通异步发送

2.2、带回调函数的异步发送

3、同步发送 API

4、生产者分区

4.1、分区的优势

4.2、生产者发送消息的分区策略

示例1:将数据发往指定 partition 

示例2:有 key 的情况下将数据发送到Kafka

4.3、自定义分区器

5、生产者提高吞吐量

6、数据可靠性

7、数据去重

1、幂等性

8、生产者事务

1、事务原理

2、使用事务

9、数据的有序

注:示例代码使用的语言是Python

1、生产者消息发送流程

1.1、发送原理

  • 在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程 中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator, Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。

参数说明:

  • batch size:只有数据积累到batch.size之后,sender才会发送数据。默认16K
  • linger.ms:如果数据迟迟未达到batch.size,sender等待linger.ms设置的时间到了之后在发送是数据。单位ms,默认值为0ms,表示没有延迟。
  • acks:
    • 0:生产者发送过来的数据不需要等待应答,异步发送。
    • 1:生产者发送过来的数据,需要等待Leader收到后应该。
    • -1(all):生产者发送过来的数据,Leader和ISR(In-Sync Replicas)队列里面所有的节点收齐数据后应答。注:-1与all等价

2、异步发送 API

2.1、普通异步发送

示例:创建 Kafka 生产者,采用异步的方式发送到 Kafka Broker

from kafka3 import KafkaProducerdef producer(topic: str, msg: str, partition=0):""":function: 生产者,生产数据:param topic: 写入数据所在的topic:param msg: 写入的数据:param partition: 写入数据所在的分区:return:"""print("开始生产数据......")# 初始化生产者对象,bootstrap_servers参数传入kafka集群# 将acks的值设为0,acks=0,此方式也是异步的方式,但是生产环境中不会这样使用,因为存在数据丢失的风险# producer = KafkaProducer(bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"], acks=0)producer = KafkaProducer(bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"])# 将发送消息转换成bytes类型,编码使用utf-8future = producer.send(topic=topic, value=bytes(msg, 'utf-8'), partition=partition)producer.close()if __name__ == '__main__':msg = "this is profucer01"topic = "first"producer(topic, msg)

2.2、带回调函数的异步发送

  • 回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是元 数据信息(RecordMetadata)和异常信息(Exception),如果 Exception 为 null,说明消息发 送成功,如果 Exception 不为 null,说明消息发送失败。
  • 注意:消息发送失败会自动重试,不需要在回调函数中手动重试。
"""
带回调函数的异步发送
回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception),
如果 Exception 为 null,说明消息发送成功,如果 Exception 不为 null,说明消息发送失败。
"""
from kafka3 import KafkaProducerdef producer(topic: str, msg: str, partition=0):""":function: 生产者,生产数据:param topic: 写入数据所在的topic:param msg: 写入的数据:param partition: 写入数据所在的分区:return:"""print("开始生产数据......")# 定义发送成功的回调函数def on_send_success(record_metadata):print("消息成功发送到主题:", record_metadata.topic)print("分区:", record_metadata.partition)print("偏移量:", record_metadata.offset)# 定义发送失败的回调函数def on_send_error(excp):print("发送消息时出现错误:", excp)# 可以根据实际情况执行一些错误处理逻辑# 初始化生产者对象,bootstrap_servers参数传入kafka集群producer = KafkaProducer(bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"])# 将发送消息转换成bytes类型,编码使用utf-8producer.send(topic=topic, value=bytes(msg, 'utf-8'), partition=partition).add_callback(on_send_success).add_errback(on_send_error)producer.close()

3、同步发送 API

  • 只需在异步发送的基础上,再调用一下 get()方法即可。或者将acks的值设为all,acks="all",此方式也是同步的方式。
from kafka3 import KafkaProducerdef producer(topic: str, msg: str, partition=0):""":function: 生产者,生产数据:param topic: 写入数据所在的topic:param msg: 写入的数据:param partition: 写入数据所在的分区:return:"""print("开始生产数据......")# 初始化生产者对象,bootstrap_servers参数传入kafka集群# 将acks的值设为all,acks="all",此方式也是同步的方式.# producer = KafkaProducer(bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"], acks="all")producer = KafkaProducer(bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"])# 将发送消息转换成bytes类型,编码使用utf-8future = producer.send(topic=topic, value=bytes(msg, 'utf-8'), partition=partition)# 等待 Future 返回结果,设置超时时间为10秒future.get(timeout=10)producer.close()

4、生产者分区

4.1、分区的优势

  • 1、便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一 块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。
  • 2、提高并行度,生产者可以以分区为单位发送数据;消费者可以以分区为单位进行消费数据。

4.2、生产者发送消息的分区策略

  • 1、如果不指定分区,会使用默认分区策略。默认分区策略如下:
    • 如果key存在的情况下,将key的hash值与topic的partition进行取余得到partition值
    • 如果key不存在的情况下,会随机选择一个分区

  • 2、如果指明了分区,那么将会把数据发送到指定分区

示例1:将数据发往指定 partition 

  • 将所有数据发往分区 0 中。

# 指定分区
def producer_01(topic: str, msg: str, partition=0):""":function: 指定分区:param topic: 写入数据所在的topic:param msg: 写入的数据:param partition: 写入数据所在的分区:return:"""# 初始化生产者对象,bootstrap_servers参数传入kafka集群producer = KafkaProducer(bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"])# 将发送消息转换成bytes类型,编码使用utf-8future = producer.send(topic=topic, value=bytes(msg, 'utf-8'), partition=partition)try:# 等待消息发送完成sendResult = future.get(timeout=10)print(f"消息: {msg}\n所在的分区: {sendResult.partition}\n偏移量为: {sendResult.offset}\n")# 关闭生产producer.close()except KafkaError as e:print(f"消息: {msg} 发送失败\n失败信息为: {e}\n")msg = "this is partition"
topic = "first"
for i in range(5):producer_01(topic, msg+str(i))

示例2:有 key 的情况下将数据发送到Kafka

  • 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取 余得到 partition 值。
# 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值。
def producer_02(topic: str, msg: str, key: str):""":function: 指定分区:param topic: 写入数据所在的topic:param msg: 写入的数据:param key: 发送消息的key值:return:"""# 初始化生产者对象,bootstrap_servers参数传入kafka集群producer = KafkaProducer(bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"])# 将发送消息转换成bytes类型,编码使用utf-8future = producer.send(topic=topic, key=bytes(key, 'utf-8'), value=bytes(msg, 'utf-8'))try:# 等待消息发送完成sendResult = future.get(timeout=10)print(f"消息: {msg}\n所在的分区: {sendResult.partition}\n偏移量为: {sendResult.offset}\n")# 关闭生产producer.close()except KafkaError as e:print(f"消息: {msg} 发送失败\n失败信息为: {e}\n")msg = "this is partition"
topic = "first"
key = "a"
for i in range(5):producer_02(topic, msg+str(i), key)

4.3、自定义分区器

  • 可以根据实际需要,自定义实现分区器。
  • 示例:自定义分区 发送过来的数据中如果包含 hello,就发往 0 号分区,不包含 hello,就发往 1 号分区。
# 自定义分区 发送过来的数据中如果包含 hello,就发往 0 号分区,不包含 hello,就发往 1 号分区。
def producer_03(topic: str, msg: str):""":function: 自定义分区:param topic: 写入数据所在的topic:param msg: 写入的数据:return:"""# 自定义分区器def my_partitioner(msg):if "hello" in str(msg):return 0else:return 1# 初始化生产者对象,bootstrap_servers参数传入kafka集群producer = KafkaProducer(bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"])# 将发送消息转换成bytes类型,编码使用utf-8future = producer.send(topic=topic, value=bytes(msg, 'utf-8'), partition=my_partitioner(msg))try:# 等待消息发送完成sendResult = future.get(timeout=10)print(f"消息: {msg}\n所在的分区: {sendResult.partition}\n偏移量为: {sendResult.offset}\n")# 关闭生产producer.close()except KafkaError as e:print(f"消息: {msg} 发送失败\n失败信息为: {e}\n")msg = "hello this is partition"
msg1 = "this is partition"

5、生产者提高吞吐量

  • 实际工作中,会根据实际的情况动态的调整生产者的吞吐量以适应实际需求,调整吞吐量主要是通过调整以下参数实现:
    • batch.size:批次大小,默认16k
    • linger.ms:等待时间,修改为5-100ms
    • compression.type:压缩snappy
    • RecordAccumulator:缓冲区大小,默认32m,修改为64m
"""
生产者提高吞吐量1、linger.ms:等待时间,修改为5-100ms2、compression.type:压缩snappy3、RecordAccumulator:缓冲区大小,修改为64m
"""
from kafka3 import KafkaProducer
from kafka3.errors import KafkaErrordef producer(topic: str, msg: str):""":function: 生产者,生产数据:param topic: 写入数据所在的topic:param msg: 写入的数据:return:"""# 初始化生产者对象,bootstrap_servers参数传入kafka集群producer = KafkaProducer(bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"],linger_ms=5, # linger_ms设置为5mscompression_type="snappy", # 设置压缩类型为snappybuffer_memory=64*1024*1024 # 设置缓冲区大小为64MB)# 将发送消息转换成bytes类型,编码使用utf-8future = producer.send(topic=topic, value=bytes(msg, 'utf-8'))try:# 等待消息发送完成sendResult = future.get(timeout=10)print(f"消息: {msg}\n所在的分区: {sendResult.partition}\n偏移量为: {sendResult.offset}\n")# 关闭生产producer.close()except KafkaError as e:print(f"消息: {msg} 发送失败\n失败信息为: {e}\n")

6、数据可靠性

说明:数据的可靠性保证主要是通过acks的设置来保证的,下面说明acks在不同取值下的数据可靠性情况:

  • acks=0时
    • 因为生产者发送数据后就不管了,所以当Leader或Follower发生异常时,就会发生数据丢失。
    • 实际使用很少
  • acks=1时
    • 因为生产者只需要等到Leader应答后就算完成本次发生了,但是当Leader应答完成后,还没有开始同步副本数据,Leader此时挂掉,新的Leader上线后并不会收到丢失数据,因为生产者已经认为数据发送成功了,这时就会发生数据丢失
    • 实际使用:一般用于传输普通日志
  • acks=-1时
    • 因为生产者需要等到Leader和Follower都收到数据后才算完成本次数据传输,所以可靠性高,但是当分区副本只有1个或者ISR应答的最小副本设置为1,此时和acks=1时效果一样,存在数据丢失的风险。
    • 实际使用:对可靠性要求较高的场景中,比如涉及到金钱相关的场景

综上分析:要想使得数据完全可靠条件=ACK级别设置为1 + 分区副本数大于等于2 + ISR应答最小副本数大于等于2(min.insync.replicas  参数保证)

Python代码设置acks

# acks取值:0、1、"all"
producer = KafkaProducer(bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"], acks=0)

7、数据去重

  • 至少一次(At Least Once)= ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2;可以保证数据不丢失,但是不能保证数据不重复。
  • 最多一次(At Most Once)= ACK级别设置为0;可以保证数据不重复,但是不能保证数据不丢失。

那么如何保证数据只存储一次呢?这就需要使用幂等性。

1、幂等性

1、幂等性:

  • 1、幂等性就是指Producer不论向Broker发送多少次重复数据,Broker端都只会持久化一条,保证了不重复。
  • 2、精确一次(Exactly Once) = 幂等性 + 至少一次( ack=-1 + 分区副本数>=2 + ISR最小副本数量>=2) 。

2、幂等性实现原理:

  • 具有<PID, Partition, SeqNumber>相同主键的消息提交时,Broker只会持久化一条
    • 其 中PID是Kafka每次重启都会分配一个新的;
    • Partition 表示分区号;
    • Sequence Number 每次发送消息的序列号,是单调自增的。
  • 注意:幂等性只能保证的是在单分区单会话内不重复。

3、使用幂等性

  • 开启参数 enable_idempotence 默认为 true,false 关闭。
  • 目前的 kafka3 库并不支持直接设置生产者的幂等性。在 Kafka 中启用幂等性需要使用 kafka-python 或其他支持 Kafka 协议的库。
  • 以下是使用 kafka-python 库设置生产者的幂等性的示例代码:
from kafka import KafkaProducer# 创建 KafkaProducer 实例,开启幂等性
producer = KafkaProducer(bootstrap_servers="127.0.0.1:9092",acks="all",  # 设置 acks 参数为 "all",要求所有副本都确认消息enable_idempotence=True
)

8、生产者事务

说明:开启事务必须开启幂等性。

1、事务原理

存储事务信息的特殊主题:__transaction_state_分区_Leader

  • 默认有50个分区,每个分区负责一部分事务。
  • 事务划分是根据transaction.id的hash值%50,计算出该事物属于哪个分区。
  • 该分区Leader副本所在的broker节点即为这个transaction.id对应的Transaction Coordinator节点。

注意事项:生产者在使用事务功能之前,必须先自定义一个唯一的transaction.id。有了该transaction.id,即使客户端挂掉了,它重启之后也能继续处理未完成的事务。

2、使用事务

  • 目前的 kafka3 库并不支持直接创建事务。Kafka 事务的支持需要使用 kafka-python 或其他支持 Kafka 协议的库。
  • 以下是使用 kafka-python 库创建事务的示例代码:
from kafka import KafkaProducer
from kafka.errors import KafkaError# 创建 KafkaProducer 实例,开启事务
producer = KafkaProducer(bootstrap_servers="127.0.0.1:9092",enable_idempotence=True  # 开启幂等性
)# 初始化事务
producer.init_transactions()# 开始事务
producer.begin_transaction()try:# 发送事务性消息for i in range(3):key = b"my_key"value = b"my_value_%d" % iproducer.send("my_topic", key=key, value=value)# 提交事务producer.commit_transaction()except KafkaError as e:# 回滚事务producer.abort_transaction()print(f"发送消息失败: {e}")finally:# 关闭 KafkaProducer 实例producer.close()

9、数据的有序性

说明:数据的有序性只能保证单分区有序,分区与分区之间是无序的。

1、Kafka在1.x版本之前保证数据单分区有序,条件如下:

  • max.in.flight.requests.per.connection=1 (不需要开启幂等性)

2、Kafka在1.x版本之后保证数据单分区有序,条件如下:

  • 未开启幂等性
    • 设置:max.in.flight.requests.per.connection=1
  • 开启幂等性
    • 设置:max.in.flight.requests.per.connection 小于等于5
    • 原因:因为在Kafka1.x以后,启用幂等性,Kafka服务端会缓存生产者发来的最近5个request的元数据,所以至少可以保证最近5个request的数据都是有序的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/314375.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

playwright 使用

pip install playwright 是一个命令&#xff0c;用于通过 Python 的包管理工具 pip 安装 Playwright 库。Playwright 是一个用于端到端网页测试的库&#xff0c;支持多种浏览器&#xff0c;包括 Chromium、Firefox 和 WebKit。 执行 pip install playwright 命令后&#xff0c…

Android使用ProtoBuf 适配 gradle7.5 gradle8.0

ProtoBuf 适配 Gradle7.5 gradle-wrapper.properties 配置 distributionUrlhttps\://services.gradle.org/distributions/gradle-7.5-bin.zipProject&#xff1a;build.gradle: plugins {id com.android.application version 7.4.2 apply falseid com.android.library versio…

python-opencv实现最近邻插值和双线性插值对图片上采样

使用背景 当我们需要把图像进行放大或者缩小的时候&#xff0c;第一反应是使用resize()实现。很多情况下&#xff0c;我们会调用最近邻插值和双线性插值去放大图片&#xff0c;当然要说没有分辨率的损失那是不可能的&#xff0c;只能说在放大图片的过程中尽可能增加了图片的分…

React复习笔记

基础语法 创建项目 借助脚手架&#xff0c;新建一个React项目(可以使用vite或者cra&#xff0c;这里使用cra) npx create-react-app 项目名 create-react-app是React脚手架的名称 启动项目 npm start 或者 yarn start src是源文件index.js相当于Vue的main.js文件。整个…

C语言:一维数组、二维数组、字符数组介绍

数组 介绍一维数组定义应用方法初始化 举例示例结果 二维数组定义应用方法初始化 举例示例结果 字符数组定义应用方法初始化 举例示例结果分析 介绍 在C语言中&#xff0c;数组是一种基本的数据结构&#xff0c;用于存储一系列相同类型的数据。数组可以是多维的&#xff0c;最…

【嵌入式】Arduino IDE + ESP32开发环境配置

一 背景说明 最近想捣鼓一下ESP32的集成芯片&#xff0c;比较了一下&#xff0c;选择Arduino IDE并添加ESP32支持库的方式来开发&#xff0c;下面记录一下安装过程以及安装过程中遇到的坑。 二 下载准备 【1】Arduino IDE ESP32支持一键安装包&#xff08;非常推荐&#xff0…

miniTry:Python实现web搜索(全自动+程序操控)

声明&#xff1a;本问给出了全部代码--可以复现--亲测有效 :) [ 代码为图片--> 强制自己去敲一次 又不多] 1.打开网站&#xff1a; 2.利用id去定位到我们要进行输入的内容&#xff08;bing可以直接进行搜索&#xff0c;而csdn需要登录&#xff0c;所以我们用csdn做演示&…

python 使用flask_httpauth和pyjwt实现登录权限控制

最近需要用到&#xff0c;学习了一下记录 首先安装依赖 pip install Flask-HTTPAuth pyjwt passlib Welcome to Flask-HTTPAuth’s documentation! — Flask-HTTPAuth documentation Welcome to PyJWT — PyJWT 2.8.0 documentation Passlib 1.7.4 documentation — Passl…

Java8 Stream常见用法

Stream流的常见用法&#xff1a; 1.利用stream流特性把数组转list集合 //定义一个数组Integer[] array {5,2,1,6,4,3};//通过stream特性把数组转list集合List<Integer> list Arrays.stream(array).collect(Collectors.toList());//打印结果System.out.println(list);…

Docker深入探索:网络与资源控制、数据管理与容器互联以及镜像生成

目录 一、 Docker网络 &#xff08;一&#xff09;Docker网络实现原理 &#xff08;二&#xff09;Docker网络模式 1. Bridge网络&#xff08;默认&#xff09; 2. Host网络 3. None网络 4. Container网络 5. 自定义网络 二、资源控制 &#xff08;一&#xff09;cgr…

从递归角度串联二叉树-图论-动态规划

一、深度理解二叉树的前中后序遍历 二叉树遍历框架如下&#xff1a; void traverse(TreeNode* root) {if (root nullptr) {return;}// 前序位置traverse(root->left);// 中序位置traverse(root->right);// 后序位置 }先不管所谓前中后序&#xff0c;单看 traverse 函数…

分布式与一致性协议之CAP(五)

CAP 理论 如何使用BASE理论 以InfluxDB系统中DATA节点的集群实现为例。DATA节点的核心功能是读和写&#xff0c;所以基本可用是指读和写的基本可用。我们可以通过分片和多副本实现读和写的基本可用。也就是说&#xff0c;将同一业务的数据先分片&#xff0c;再以多份副本的形…

Rust中的函数指针

什么是函数指针 通过函数指针允许我们使用函数作为另一个函数的参数。函数的类型是 fn &#xff08;使用小写的 ”f” &#xff09;以免与 Fn 闭包 trait 相混淆。fn 被称为 函数指针&#xff08;function pointer&#xff09;。指定参数为函数指针的语法类似于闭包。 函数指…

如何在TestNG中忽略测试用例

在这篇文章中&#xff0c;我们将讨论如何在TestNG中忽略测试用例。TestNG帮助我们忽略使用Test注释的情况&#xff0c;我们可以在不同的级别上忽略这些情况。 首先&#xff0c;只忽略一个测试方法或测试用例。第二&#xff0c;忽略一个类及其子类中的所有情况。第三个是&#…

【深度学习】YOLOv5,烟雾和火焰,目标检测,防火检测,森林火焰检测

文章目录 数据收集和数据标注查看标注好的数据的脚本下载yolov5创建 dataset.yaml训练参数开始训练yolov5n训练训练后的权重下载gradio部署 数据收集和数据标注 搜集数据集2w张。 pip install labelme labelme 然后标注矩形框和类别。 下载数据请看这里&#xff1a; https:…

图像处理之Retinex算法(C++)

图像处理之Retinex算法&#xff08;C&#xff09; 文章目录 图像处理之Retinex算法&#xff08;C&#xff09;前言一、单尺度Retinex&#xff08;SSR&#xff09;1.原理2.代码实现3.结果展示 二、多尺度Retinex&#xff08;MSR&#xff09;1.原理2.代码实现3.结果展示 三、带色…

【01-机器学习入门:理解Scikit-learn与Python的关系】

文章目录 前言Python与机器学习Scikit-learn简介Scikit-learn与Python的关系使用Scikit-learn进行机器学习结语 前言 在当今的数据科学和人工智能领域&#xff0c;机器学习已经成为了一个不可或缺的组成部分。而对于那些刚刚踏入这一领域的新手来说&#xff0c;理解机器学习的基…

线性代数 --- 矩阵的对角化以及矩阵的n次幂

矩阵的对角化以及矩阵的n次幂 &#xff08;特征向量与特征值的应用&#xff09; 前言&#xff1a; 在上一篇文章中&#xff0c;我记录了学习矩阵的特征向量和特征值的学习笔记&#xff0c;所关注的是那些矩阵A作用于向量x后&#xff0c;方向不发生改变的x(仅有尺度的缩放)。线…

Xilinx 7系列中clock IP核通过AXI4-Lite接口实现动态重新配置

当选择了动态重配置&#xff08;Dynamic Reconfiguration&#xff09;选项时&#xff0c;AXI4-Lite接口将默认被选中用于重新配置时钟组件。动态重新配置可以通过AXI4-Lite接口实现了Clocking Wizard IP核的时钟组件MMCM/PLL的动态重新配置。 如果需要直接访问MMCM/PLL的DRP寄…

C++ 头文件/宏冲突问题解决?如何解决?

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…