线性代数 --- 矩阵的对角化以及矩阵的n次幂

矩阵的对角化以及矩阵的n次幂

(特征向量与特征值的应用)

前言:

        在上一篇文章中,我记录了学习矩阵的特征向量和特征值的学习笔记,所关注的是那些矩阵A作用于向量x后,方向不发生改变的x(仅有尺度的缩放)。
线性代数 --- 特征值与特征向量(上)-CSDN博客文章浏览阅读1.1k次,点赞9次,收藏21次。文章介绍了特征向量与特征值的基本概念,并给出了详细的说明图示和例子。至于如何求解矩阵的特征向量与特征值,我在下一篇文章中给出了说明。https://blog.csdn.net/daduzimama/article/details/136455766
此外,我也在另一篇文章中提到了一般矩阵的特征值与特征向量的求法。 线性代数 --- 特征值与特征向量(下)-CSDN博客文章浏览阅读1.3k次,点赞31次,收藏19次。本文介绍了求解一般矩阵的特征向量和特征值的具体方法。https://blog.csdn.net/daduzimama/article/details/136608493


正文: 

Part I 矩阵的对角化

矩阵对角化的意义: 

        这里,我打算通过这篇文章整理/梳理一下矩阵对角化的学习笔记。既然已经知道了如何求出矩阵的特征向量和特征值现,那么找到这些东西有什么用呢?答案就是矩阵的对角化。

(截图来自于参考文献2) 

        假设一个n维方阵A经过计算后得到n个线性无关的特征向量x1,x2...,xn,对应n个λ1,λ2...,λn。我们有:

\left\{\begin{matrix} Ax_{1}=\lambda x_{1}\\ Ax_{2}=\lambda x_{2}\\ ...\\ Ax_{n}=\lambda x_{n} \end{matrix}\right.

        现在,我们把这些特征向量都放到一个矩阵中,合成一个新的矩阵X。看看矩阵A乘以矩阵X后会怎么样。首先,我们按照如下方式构建一个新矩阵X,我们称之为特征向量矩阵(Eigen-vector matrix)。因为该矩阵的每一列都是一个特征向量x_{i},所以用大写的X表示:

X=\begin{bmatrix} | & | & &| \\ | & | & & | \\ x_{1} & x_{2} &... &x_{n} \\ | & | & & | \\ | & | & & | \end{bmatrix}

        令A乘以X,根据矩阵的乘法原则,矩阵A与矩阵X的乘法可以看成是把矩阵X各列看成权重的线性组合的结果(这句话不好懂,可以看看下面的图示)

得到:

AX=A\begin{bmatrix} | & | & &| \\ | & | & & | \\ x_{1} & x_{2} &... &x_{n} \\ | & | & & | \\ | & | & & | \end{bmatrix}=\begin{bmatrix} | & | & &| \\ | & | & & | \\ Ax_{1} & Ax_{2} &... &Ax_{n} \\ | & | & & | \\ | & | & & | \end{bmatrix}

=\begin{bmatrix} | & | & &| \\| & | & &| \\ \lambda _{1}x_{1} & \lambda _{2}x_{2} &... &\lambda _{n}x_{n} \\ | & | & & | \\ | & | & & | \end{bmatrix}=\begin{bmatrix} | & | & &| \\ | & | & &| \\ x_{1} & x_{2} &... &x_{n} \\ | & | & & | \\ | & | & & | \end{bmatrix}\begin{bmatrix} \lambda _{1} &0 &... &0 \\0 & \lambda _{2} &... &0 \\... & ...&... & ...\\ 0 & 0&... & 0\\ 0 & 0 &... & \lambda _{n} \end{bmatrix}

        注意,之前用特征向量构造的新矩阵X,又再一次出现了。与此同时,他的旁边出现了一个新矩阵,这是一个对角矩阵,主对角线上的元素全是特征值λ。这也是一个新矩阵,称之为特征值矩阵(Eigen-value matrix)。因其主对角线上的元素都是特征值\lambda _{i},所以用大写的\Lambda(即,大写的λ)表示:

\Lambda =\begin{bmatrix} \lambda _{1} &0 &... &0 \\0 & \lambda _{2} &... &0 \\... & ...&... & ...\\ 0 & 0&... & 0\\ 0 & 0 &... & \lambda _{n} \end{bmatrix}

 最终得到:

AX=\begin{bmatrix} | & | & &| \\ | & | & &| \\ x_{1} & x_{2} &... &x_{n} \\ | & | & & | \\ | & | & & | \end{bmatrix}\begin{bmatrix} \lambda _{1} &0 &... &0 \\0 & \lambda _{2} &... &0 \\... & ...&... & ...\\ 0 & 0&... & 0\\ 0 & 0 &... & \lambda _{n} \end{bmatrix}=X\Lambda

The Key Equation 

AX=X\Lambda

         又因为,我之前所构建的特征向量矩阵X是由n个线性无关的特征向量组成的,列与列之间线性无关。因此,矩阵X是可逆的。现在我们把等式两边同时左乘一个X的逆矩阵,即完成了矩阵A的对角化:

\mathbf{X^{-1}AX=X^{-1}X\Lambda=\Lambda}

(对角化公式)

        反过来,如果把等式两边同时右乘X的逆矩阵,就得到了矩阵A的又一种分解公式(之前学过的分解有基于高斯消元的LU分解,基于gram-schmidt正交化的QR分解):

 \mathbf{AXX^{-1}=X\Lambda X^{-1}\Rightarrow A=X\Lambda X^{-1}}

(矩阵A的分解公式)

注意,这一切操作都基于一个前提:矩阵A有n个线性无关的特征向量

什么样的矩阵可以对角化?

        当n维方阵A有n个不同的特征值时,矩阵A才能用上述方式对角化。因为,如果A有n个不同的特征值,那么一定对应有n个相互独立的特征向量。但反过来就不一定成立,比如说单位矩阵有n个不同的特征向量,但他的特征值都是1。下面是我用python在jupyter中所写的代码,他先是导入了部分的数据库,然后计算了一个3x3的单位矩阵的特征向量和特征值。根据结果来看,单位矩阵有3个不同的特征向量【1,0,0】,【0,1,0】,【0,0,1】,但这些特征向量都共用一个特征值1。

 (截图来自于我用Jupyter notebook所生成的代码)

矩阵对角化的例子:

最后我们给出一个矩阵对角化的例子作为这部分的小结,假设方阵矩阵A为:

A=\begin{bmatrix} 1 &5 \\ 0 & 6 \end{bmatrix}

首先,用jupyter note book求出特征向量和特征值:

        注意,他这里的数组要竖着看,也就是说,第一特征向量是array中的第一列【1,0】。第二个特征向量是array中的第二列【0.7071,0.7071】 。

Remark: 理论上,无论你有什么软件去去特征向量,特征向量的长度都应该是1,或者说都应该是一个单位向量。

        为了方便,我把后面那个特征向量改成[1,1](我这里不是乱改的,如果自己动手算也能得到这个结果)。如此一来我们得到的两个特征值和他们各自对应的特征向量为:

\lambda _{1}=1,x_{1}=\begin{bmatrix} 1\\ 0 \end{bmatrix}        和        \lambda _{2}=6,x_{2}=\begin{bmatrix} 1\\ 1 \end{bmatrix}

相应的在这里我们就能写出特征值矩阵\Lambda

\Lambda =\begin{bmatrix} \lambda 1 & 0\\ 0 & \lambda 2 \end{bmatrix}=\begin{bmatrix} 1 & 0\\ 0 & 6 \end{bmatrix}

 齐次,用特征向量构建特征向量矩阵X:

X=\begin{bmatrix} | & |\\ x_{1} &x_{2} \\ |& | \end{bmatrix}=\begin{bmatrix} 1 &1\\ 0 &1 \end{bmatrix}

 求特征向量矩阵X的逆:

 X^{-1}=\begin{bmatrix} 1 &-1 \\ 0& 1 \end{bmatrix}

代入矩阵的对角化公式完成对角化,看乘法的结果是否正好等于特征向量矩阵\Lambda: 

 X^{-1}AX=\begin{bmatrix} 1 &-1 \\ 0& 1 \end{bmatrix}\begin{bmatrix} 1 &5 \\ 0& 6 \end{bmatrix}\begin{bmatrix} 1 &1 \\ 0& 1 \end{bmatrix}=\begin{bmatrix} 1 &0 \\ 0& 6 \end{bmatrix}

        这里要注意,矩阵的乘法在python里面的操作符是“@”,也就是上图中我用红框框出来的。如果写错了,计算结果就不对了,我在上图中也演示的错误的结果。 

同样的,代入矩阵A的分解公式验证等式两边是否相等:

A=X\Lambda X^{-1}


 Part II 矩阵的n次幂

矩阵n次幂的计算方法:        

        当我们要计算矩阵的n次幂时,我们可以先基于前面的矩阵的分解公式对矩阵进行分解后,再计算分解后的矩阵的n次幂。正如下图所示,中间的X与X的逆的乘积都消去了,最终A的n次幂都落在了特征值矩阵\Lambda的头上。

A=X\Lambda X^{-1}\Rightarrow A^{n}=(X\Lambda X^{-1})(X\Lambda X^{-1})...(X\Lambda X^{-1})=X\Lambda ^{n}X^{-1}

好在\Lambda是一个对角阵他的n次幂等于,对角线各元素的n次幂。例如下图中,对角阵A的2次幂和3次幂的结果等于主对角线上元素的对应次幂。

 这就是说,假设\Lambda矩阵为:

\Lambda =\begin{bmatrix} \lambda _{1}& & \\ & \lambda _{2} & \\ & & \lambda _{3} \end{bmatrix}

则它所对应的n次幂为:

 \Lambda ^{n}=\begin{bmatrix} \lambda _{1}^{n}& & \\ & \lambda _{2}^{n} & \\ & & \lambda _{3}^{n} \end{bmatrix}

        注意,通过特征向量和特征值对矩阵A的分解之所以会被用于计算矩阵A的n次幂,是因为这种矩阵的分解方法不同于之前学习的矩阵分解,例如基于高斯消元的LU分解和基于gram-schmidt的QR分解。比如说,我们分别用LU分解和QR分解去计算矩阵的n次幂,我们只会得到下面的结果:

矩阵A的n次幂的例子(A Markov matrix):

现有一个2x2的Markov矩阵:

A=\begin{bmatrix} 0.8 &0.3 \\ 0.2& 0.7 \end{bmatrix}

  

计算他的特征向量与特征值,基于特征值的判断矩阵是否可对角化。

        这个2x2的方阵有两个不同的特征值,对应两个不同的特征向量。因此可以被对角化。这里顺便再检查一下特征向量的长度是否为1。

 构建特征值矩阵,特征向量矩阵和特征向量矩阵的逆矩阵:

X=\begin{bmatrix} 0.8320502&-0.70710678 \\ 0.5547002& 0.70710678 \end{bmatrix},\Lambda =\begin{bmatrix} 1&0 \\ 0& 0.5 \end{bmatrix} 

X^{-1}=\begin{bmatrix} 0.72111026& 0.72111026 \\ -0.56568542& 0.84852814 \end{bmatrix} 

计算矩阵A的平方:

A^{2}=X\Lambda ^{2}X^{-1}=\begin{bmatrix} 0.8320502&-0.70710678 \\ 0.5547002& 0.70710678 \end{bmatrix}\begin{bmatrix} 1^{2}&0 \\ 0& 0.5^{2} \end{bmatrix}\begin{bmatrix} 0.72111026& 0.72111026 \\ -0.56568542& 0.84852814 \end{bmatrix}

计算A的5次方:

A^{5}=X\Lambda ^{5}X^{-1}=\begin{bmatrix} 0.8320502&-0.70710678 \\ 0.5547002& 0.70710678 \end{bmatrix}\begin{bmatrix} 1^{5}&0 \\ 0& 0.5^{5} \end{bmatrix}\begin{bmatrix} 0.72111026& 0.72111026 \\ -0.56568542& 0.84852814 \end{bmatrix}

 计算A的20次方(这里我使用了python自带的函数算的):

        到目前为止,我们知道矩阵的计算只和两个数的n次幂有关,一个是1,一个是0.5。又因为1的n次幂不变,而随着n的增加,0.5的n次幂只会越来越小。因此,可以预料的是随着n增加的越来越大,这个计算结果必然会收敛到一个极限,这次我们再试试A的100次方:

A^{100}=X\Lambda ^{100}X^{-1}=\begin{bmatrix} 0.8320502&-0.70710678 \\ 0.5547002& 0.70710678 \end{bmatrix}\begin{bmatrix} 1^{100}&0 \\ 0& 0.5^{100} \end{bmatrix}\begin{bmatrix} 0.72111026& 0.72111026 \\ -0.56568542& 0.84852814 \end{bmatrix}

可见计算到A的20次幂的时候,基本上就已经达到极限了,即一个定值。这说明Markov matrix是一个稳态矩阵。

结合这个例子我们可以给出一个推论:

当一个矩阵的所有特征向量的绝对值都小于一时,这个矩阵就是一个稳态矩阵。


 (全文完) 

--- 作者,松下J27

参考文献(鸣谢):

1,Lec22_对角化和矩阵乘幂_哔哩哔哩_bilibili

2,《Introduction to Linear algebra》Fifth Edition --- Gilbert strang,page 304

(配图与本文无关) 

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/314352.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Xilinx 7系列中clock IP核通过AXI4-Lite接口实现动态重新配置

当选择了动态重配置(Dynamic Reconfiguration)选项时,AXI4-Lite接口将默认被选中用于重新配置时钟组件。动态重新配置可以通过AXI4-Lite接口实现了Clocking Wizard IP核的时钟组件MMCM/PLL的动态重新配置。 如果需要直接访问MMCM/PLL的DRP寄…

C++ 头文件/宏冲突问题解决?如何解决?

🏆本文收录于「Bug调优」专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&…

SpringBoot + kotlin 协程小记

前言: Kotlin 协程是基于 Coroutine 实现的,其设计目的是简化异步编程。协程提供了一种方式,可以在一个线程上写起来像是在多个线程中执行。 协程的基本概念: 协程是轻量级的,不会创建新的线程。 协程会挂起当前的协…

【软件】ERETCAD-Env:在轨空间环境3D动态仿真软件

文章介绍了Extreme-environment Radiation Effect Technology Computer-Aided Design – Environment (ERETCAD-Env)软件,文章的介绍和展示了ERETCAD-Env软件的功能和特点,这是一款用于动态模拟在轨卫星所处空间环境的计算机辅助设计软件。强调了该软件在…

如何在CentOS本地搭建DataEase数据分析服务并实现远程查看数据分析

文章目录 前言1. 安装DataEase2. 本地访问测试3. 安装 cpolar内网穿透软件4. 配置DataEase公网访问地址5. 公网远程访问Data Ease6. 固定Data Ease公网地址 前言 DataEase 是开源的数据可视化分析工具,帮助用户快速分析数据并洞察业务趋势,从而实现业务…

pycharm远程连接server

1.工具–部署–配置 2.部署完成后,将现有的项目的解释器设置为ssh 解释器。实现在远端开发 解释器可以使用/usr/bin/python3

怎么排查K8S容器当中的Java程序内存泄露问题

今天早上发现生产线其中的一个服务在凌晨的时候突然重启了,内存突然从1G升到1.8G,CPU使用量从0.1升到了0.28,说明在这个时间点,内存突增达到了限额以上,服务重启了。因为这个服务布署了多节点,这次重启对业…

12 c++版本的坦克大战

前言 呵呵 这大概是 大学里面的 c 贪吃蛇了吧 有一些 面向对象的理解, 但是不多 这里 具体的实现 就不赘述, 仅仅是 发一下代码 以及 具体的使用 坦克大战 #include<iostream> #include<windows.h> #include<conio.h> #include<ctime> #include…

jvm(JVM快速入门、stack栈、堆、GC垃圾回收、Arthas)

文章目录 1. JVM快速入门1.1. 结构图1.2. 类加载器ClassLoader1.3. 执行引擎Execution Engine1.4. 本地接口Native Interface1.5. Native Method Stack1.6. PC寄存器(程序计数器)1.7. Method Area方法区 2. stack栈3. 堆3.1. 堆体系概述3.1.1. 新生区3.1.2. 老年代3.1.3. 永久代…

分类预测 | Matlab实现CNN-GRU-SAM-Attention卷积门控循环单元融合空间注意力机制的数据分类预测

分类预测 | Matlab实现CNN-GRU-SAM-Attention卷积门控循环单元融合空间注意力机制的数据分类预测 目录 分类预测 | Matlab实现CNN-GRU-SAM-Attention卷积门控循环单元融合空间注意力机制的数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现CNN-GRU…

Visual Studio 对 C++ 头文件和模块的支持

在 C 编程领域&#xff0c;头文件和模块的管理有时候确实比较令人头疼。但是&#xff0c;有许多工具和功能可以简化此过程&#xff0c;提高效率并减少出错的可能性。下面是我们为 C 头文件和模块提供的几种工具的介绍。 构建明细 通过菜单栏 Build > Run Build Insights&a…

基于Rust的多线程 Web 服务器

构建多线程 Web 服务器 在 socket 上监听 TCP 连接解析少量的 HTTP 请求创建一个合适的 HTTP 响应使用线程池改进服务器的吞吐量优雅的停机和清理注意&#xff1a;并不是最佳实践 创建项目 ~/rust ➜ cargo new helloCreated binary (application) hello package~/rust ➜ma…

maven-依赖管理

依赖配置 https://mvnrepository.com/?__cf_chl_rt_tkvRzDsumjmJ_HF95MK4otu9XluVRHGqAY5Wv4UQYETR8-1714103058-0.0.1.1-1557 <dependencies><dependency><groupId></groupId><artifactId></artifactId><version></version>…

Day4 商品管理

Day4 商品管理 这里会总结构建项目过程中遇到的问题&#xff0c;以及一些个人思考&#xff01;&#xff01; 学习方法&#xff1a; 1 github源码 文档 官网 2 内容复现 &#xff0c;实际操作 项目源码同步更新到github 欢迎大家star~ 后期会更新并上传前端项目 编写品牌服务 …

Java集合相关的List、Set、Map基础知识

目录 一、集合介绍 二、List 三、Map HashMap的数据结构 如何理解红黑树 四、set 一、集合介绍 在Java中&#xff0c;集合是一种用于存储对象的数据结构&#xff0c;它提供了一种更加灵活和强大的方式来处理和操作数据。Java集合框架提供了一系列接口和类&#xff0c;用…

表格的单元格合并和表头的合并——vxe-table

vxe-table的官网&#xff1a;https://vxetable.cn/#/table/advanced/mergeCell在你的项目中下载安装完成后&#xff0c;先在main.js文件中引入&#xff1a; import VXETable from vxe-table import vxe-table/lib/style.css Vue.use(VXETable)一、单元格合并 效果图&#xff…

Linux驱动开发——(七)Linux阻塞和非阻塞IO

目录 一、阻塞和非阻塞IO简介 二、等待队列 2.1 等待队列头 2.2 等待队列项 2.3 将队列项添加/移除等待队列头 2.4 等待唤醒 2.5 等待事件 三、轮询 四、驱动代码 4.1 阻塞IO 4.2 非阻塞IO 一、阻塞和非阻塞IO简介 IO指的是Input/Output&#xff0c;也就是输入/输…

JavaWeb--06Vue组件库Element

Element 1 Element组件的快速入门1.1 Table表格 1 Element组件的快速入门 https://element.eleme.cn/#/zh-CN Element是饿了么团队开发的 接下来我们来学习一下ElementUI的常用组件&#xff0c;对于组件的学习比较简单&#xff0c;我们只需要参考官方提供的代码&#xff0c;然…

SSH新功能揭秘:远程工作提升指南【AI写作】

首先&#xff0c;这篇文章是基于笔尖AI写作进行文章创作的&#xff0c;喜欢的宝子&#xff0c;也可以去体验下&#xff0c;解放双手&#xff0c;上班直接摸鱼~ 按照惯例&#xff0c;先介绍下这款笔尖AI写作&#xff0c;宝子也可以直接下滑跳过看正文~ 笔尖Ai写作&#xff1a;…

同态加密原理解析

目录 1.数学介绍2.使用多项式环进行加密2.1 私钥和公钥的产生2.2 加密2.3 解密 3.同态计算3.1 同态加法3.2 同态乘法 1.数学介绍 同态加密方案基于一个难以计算的问题Ring Learning with Errorsred。这些方案中的数据在加密和未加密时都用多项式表示。 这里举一个简单的多项式…