经典的目标检测算法有哪些?

一、经典的目标检测算法有哪些?

目标检测算法根据其处理流程可以分为两大类:One-Stage(单阶段)算法和Two-Stage(两阶段)算法。以下是一些经典的目标检测算法:

单阶段算法:

  • YOLO (You Only Look Once): 是一种非常快速的目标检测算法,它将目标检测任务作为回归问题来解决,直接在图像中预测边界框和类别概率。
  • SSD (Single Shot MultiBox Detector): 通过在不同尺度的特征图上进行检测,能够有效地检测出不同大小的目标,速度和精度都较为平衡。
  • RetinaNet: 引入了Focal Loss来解决类别不平衡问题,提高了模型对于难分样本的识别能力,从而提升了检测性能。

两阶段算法:

  • R-CNN (Region-based Convolutional Neural Networks): 是最早的深度学习目标检测模型之一,它首先生成候选区域,然后对每个区域进行卷积神经网络特征提取,并使用支持向量机(SVM)进行分类,最后通过边界框回归精确定位目标位置。
  • Fast R-CNN: 在R-CNN的基础上进行了改进,使用全卷积网络提取图像特征,并通过区域池化操作将不同尺寸的候选区域对齐到固定尺寸的特征图上,然后进行分类和边界框回归。
  • Faster R-CNN: 引入了区域提议网络(RPN)来生成高质量的候选区域,进一步提高了检测的速度和精度。

这些算法各有优势,选择哪种算法通常取决于具体应用场景中对速度和精度的要求。

二、YOLO 的简单例子

from ultralytics import YOLO# 加载模型
model = YOLO('E:\PycharmProjects\\yolov8n.pt')# 识别图片的物体
results = model(['E:\\testImage\\cat1.png', 'E:\\testImage\\heixiong.jpg'])# 处理图片列表
for result in results:boxes = result.boxes  # Boxes object for bounding box outputsmasks = result.masks  # Masks object for segmentation masks outputskeypoints = result.keypoints  # Keypoints object for pose outputsprobs = result.probs  # Probs object for classification outputsresult.show()  # display to screenresult.save(filename='result.jpg')  # save to disk
输出的结果图片:

 

模型下载地址:

Detect - Ultralytics YOLOv8 DocsOfficial documentation for YOLOv8 by Ultralytics. Learn how to train, validate, predict and export models in various formats. Including detailed performance stats.icon-default.png?t=N7T8https://docs.ultralytics.com/tasks/detect/

三、“糟心的PIP源

安装:

pip install ultralytics

但是总是很糟心的timeout

换国内的源速度杠杠的,分分钟搞定!!!

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

 国内的其他pip源:

# 清华

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

# 阿里

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/

# 腾讯

pip config set global.index-url http://mirrors.cloud.tencent.com/pypi/simple

# 豆瓣

pip config set global.index-url http://pypi.douban.com/simple/ 

四、如果PIP不可用,咋办?

如果PIP不可用?请检查PIP的路径是否加入到path(本说明仅限windows平台)

报错:

pip : 无法将“pip”项识别为 cmdlet

配置成功后测试:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/315471.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端三大件速成 01 HTML

文章目录 一、前端基础知识二、标签1、什么是标签2、标签的属性3、常用标签(1)声明(2)注释(3)html 根标签(3)head标签(4)body标签 三、特殊字符四、其他标签1…

xhEditor实现WORD粘贴图片自动上传

1.下载示例: 从官网下载 http://www.ncmem.com/webapp/wordpaster/versions.aspx 从gitee中下载 https://gitee.com/xproer/wordpaster-php-xheditor1x 2.将插件目录复制到项目中 3.引入插件文件 定义插件图标 初始化插件,在工具栏中添加插件按钮 效果…

Kafka源码分析(四) - Server端-请求处理框架

系列文章目录 Kafka源码分析-目录 一. 总体结构 先给一张概览图: 服务端请求处理过程涉及到两个模块:kafka.network和kafka.server。 1.1 kafka.network 该包是kafka底层模块,提供了服务端NIO通信能力基础。 有4个核心类:…

PotatoPie 4.0 实验教程(24) —— FPGA实现摄像头图像中心差分变换

为什么要对图像进行中心差分变换? 对图像进行中心差分变换的主要目的是计算图像中每个像素点的梯度。梯度在图像处理中是一个非常重要的概念,它可以用来描述图像中灰度变化的快慢和方向,常用于边缘检测、特征提取和图像增强等任务中。 具体…

【GitHub】2FA认证(双重身份验证)

GitHub 2FA认证(双重身份验证) 写在最前面一、使用 TOTP 应用程序配置双2FA(双因素身份验证)1. 介绍2. github3. 认证 官网介绍小结 & 补充 :权限不足or验证码错误问题 🌈你好呀!我是 是Yu欸…

CCS项目持续集成

​ 因工作需要,用户提出希望可以做ccs项目的持续集成,及代码提交后能够自动编译并提交到svn。调研过jenkins之后发现重新手写更有性价比,所以肝了几晚终于搞出来了,现在分享出来。 ​ 先交代背景: 1. 代码分两部分&am…

C++设计模式:适配器模式(十四)

1、定义与动机 定义:将一个类的接口转换成客户希望的另外一个接口。Adapter模式使得原本由于接口不兼容而不能一起工作的哪些类可以一起工作。 动机: 在软件系统中,由于应用环境的变化,常常需要将“一些现存的对象”放在新的环境…

【前端缓存】localStorage是同步还是异步的?为什么?

写在开头 点赞 收藏 学会 首先明确一点,localStorage是同步的 一、首先为什么会有这样的问题 localStorage 是 Web Storage API 的一部分,它提供了一种存储键值对的机制。localStorage 的数据是持久存储在用户的硬盘上的,而不是内存。这意…

Professional CUDA C Programming

2023/4/28 1.使用nvfrof时,报错 解决方法: 将路径 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\extras\CUPTI\lib64 下的文件cupti64_2020.2.0.dll复制到路径 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin下即可。 2…

岚图汽车与东软睿驰签署战略合作协议

4月26日,东软睿驰与岚图汽车正式签署战略合作协议,双方将结合在各自领域拥有的产业资源、技术研发和资本运作等优势,聚焦智能化产品和应用,建立长期共赢的战略合作伙伴关系,通过不断探索未来新技术、新产业、新业态和新模式,围绕用户需求共同打造极致的智能出行体验。 图为岚图…

Java设计模式 _创建型模式_工厂模式(普通工厂和抽象工厂)

一、工厂模式 属于Java设计模式创建者模式的一种。在创建对象时不会对客户端暴露创建逻辑,并且是通过使用一个共同的接口来指向新创建的对象。 二、代码示例 场景:花店有不同的花,通过工厂模式来获取花。 1、普通工厂模式 逻辑步骤&#…

华为matebook 14安装ubuntu双系统

一、准备u盘 首先格式化u盘(选择FAT32) 二、确认电脑类型 键盘按下win+r(win:开始键/也就是Windows的标志那个键),在输入框内输入msinfo32后,回车确认 确定自己电脑 硬盘 的类型: 在显示屏下方的搜索框内搜索“计算机管理” 点击进入后,再点击左边列表内的“磁…

java多功能手机

随着科技的发展,手机的使用已经普及到每个家庭甚至个人,手机的属性越来越强大,功能也越来越多,因此人们在生活中越来越依赖于手机。 任务要求,使用所学知识编写一个手机属性及功能分析程序设计,测试各个手机…

时间序列生成数据,TransformerGAN

简介:这个代码可以用于时间序列修复和生成。使用transformer提取单变量或者多变时间窗口的趋势分布情况。然后使用GAN生成分布类似的时间序列。 此外,还实现了基于prompt的数据生成,比如指定生成某个月份的数据、某半个月的数据、某一个星期的…

WEB逆向—X-Bogus逆向分析(纯算+补环境)

声明 本文章中所有内容仅供学习交流,抓包内容、敏感网址、数据接口均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关,若有侵权,请联系我立即删除! 前言 此平台 本人 仅限…

深度学习之视觉特征提取器——VGG系列

VGG 提出论文:1409.1556.pdf (arxiv.org) 引入 距离VGG网络的提出已经约十年,很难想象在深度学习高速发展的今天,一个模型能够历经十年而不衰。虽然如今已经有VGG的大量替代品,但是笔者研究的一些领域仍然有大量工作选择使用VG…

Web前端安全问题分类综合以及XSS、CSRF、SQL注入、DoS/DDoS攻击、会话劫持、点击劫持等详解,增强生产安全意识

前端安全问题是指发生在浏览器、单页面应用、Web页面等前端环境中的各类安全隐患。Web前端作为与用户直接交互的界面,其安全性问题直接关系到用户体验和数据安全。近年来,随着前端技术的快速发展,Web前端安全问题也日益凸显。因此&#xff0c…

SQLite导出数据库至sql文件

SQLite是一款实现了自包含、无服务器、零配置、事务性SQL数据库引擎的软件库。SQLite是世界上部署最广泛的SQL数据库引擎。 SQLite 是非常小的,是轻量级的,完全配置时小于 400KiB,省略可选功能配置时小于250KiB。 SQLite 源代码不受版权限制。…

Visual Studio Code基础:打开一个编辑器(文件)时,覆盖了原编辑器

相关阅读 VS codehttps://blog.csdn.net/weixin_45791458/category_12658212.html?spm1001.2014.3001.5482 在使用vscode时,偶尔会出现这样的问题:打开了某个编辑器(文件,下面统称文件)后,再打开其他文件…

Python AI库 Pandas的常见操作的扩展知识

Python AI库 Pandas的常见操作的扩展知识 本文默认读者具备以下技能: 熟悉python基础知识,vscode或其它编辑工具 熟悉表格文件的基本操作 具备自主扩展学习能力 前文中对Pandas的数据结构以及基础操作做了介绍,本文中会在前文的基础上,对常见的操作进…