C语言(操作符)1

                     Hi~!这里是奋斗的小羊,很荣幸各位能阅读我的文章,诚请评论指点,关注+收藏,欢迎欢迎~~     

                        💥个人主页:小羊在奋斗

                        💥所属专栏:C语言   

        本系列文章为个人学习笔记,在这里撰写成文一为巩固知识,二为同样是初学者的学友展示一些我的学习过程及心得。文笔、排版拙劣,望见谅。 

                                1、操作符的分类

                                2、原码、反码、补码

                                3、移位操作符

                                4、位操作符

                                5、逗号操作符

1、操作符的分类

        (1)算术操作符:+、-、*、/、%

        (2)移位操作符:<<、>>

        (3)位操作符:&、|、^、~

        (4)赋值操作符:=、+=、-=、*=、/=、%=、<<=、>>=、&=、|=、^=

        (5)单目操作符:!、++、--、&、*、+、-、~、sizeof、(类型)

        (6)关系操作符:>、>=、<、<=、==、!=

        (7)逻辑操作符:&&、||

        (8)条件操作符:?:

        (9)逗号表达式:,

        (10)下标引用:[ ]

        (11)函数调用:()

        (12)结构体成员访问:. 、->

2、原码、反码、补码

        整数的二进制表示方法有三种,即原码、反码和补码,有符号整数的三种表示方法均由符号位数值位组成,二进制序列中,最高位的1位是符号位,后面的都是数值位。符号位0表示正,1表示负

        整数的原码、反码和补码都相同,负数的三种表示方法各有不同。

        原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码;

        反码:将原码的符号位不变,数值位按位取反就是反码;

        补码:反码+1得到补码。

        原码转换补码、补码转换原码都是取反+1

        对整型来说,数据在内存中存放的是补码。为什么呢?

        在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码可以将符号位和数值位统一处理。同时,加法和减法也可以统一处理,因为CPU只有加法器。此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

        比如,我们计算1-1,因为CPU只有加法器,所以我们用1+(-1)的形式计算:

3、移位操作符

        (1)移动的是存储在内存中二进制位(补码);

        (2)移位操作符的操作数只能是整数;

       3.1 左移操作符:<<        

        移位规则:左边抛弃,右边补0 

        将10左移一位:

        将-5左移一位:

 

        规律:左移一位有乘2的效果;同样的,左移n位等于乘以2的n次方

        3.2 右移操作符:>>

        移位规则:(1)逻辑右移:左边补0;右边丢弃

                          (2)算术右移:左边补原该值的符号位,右边丢弃

        逻辑右移或算术右移是取决于编译器的,通常采用的都是算术右移

        将10右移一位: 

        

将-4右移一位:

        规律:右移一位有除2的效果,同样的,右移n位等于除以2的n次方。 

         注意:对于移位操作符,不要移动负数位,这个是未定义的。

4、位操作符

        注意:它们的操作数也必须都是整数。

        &:按位与(有0则为0

        因为3与-6的结果为正数,补码和原码相同,所以这里直接用了补码计算。

        |:按位或(有1则为1) 

        

        ^:按位异或(相同为0,相异为1) 

         ~:按位取反(单目操作符

例题1: 不能创建临时变量,实现两个整数的交换

        方法一:要实现两个整数的交换,我们首先会想到创建一个临时变量来解决。

        这无疑是一个最简单高效的方法。但题目明确说明了不能创建临时变量,那我们就要另想办法了。 

        方法二:既然不能创建临时变量,那我们只能对这两个数本身下手了。

        大家觉得上面这个办法怎么样?我们按照题目要求完成了任务。

        但是,这个办法是受限的。如果两个整数太大的话相加会溢出,那有没有完美的办法呢?

既然这样问,那答案肯定是有的,办法就在我们上面新学到的知识中。

        方法三:使用异或操作符

        不知道你第一次看到这个代码的时候有没有懵逼呢?反正我是挺惊讶的。那接下来我们就来分析上面的代码具体是怎么实现的。

         首先我们知道,按位异或操作符的规则是:相同为0,想异为1。因为4^4=0,所以a^a=0;因为4^0=4,所以a^0=a;因为4^4^5=5,经过计算4^5^4=5,所以异或操作符是支持交换律的。

        因为异或操作符不存在进位,所以不会发生溢出。 需要说明的是,这只是我们为了加深对异或操作符的理解而想出的一个题目,未来我们交换两个整数还是用创建临时变量的方法更好,可读性高,效率高。

 例题2:编写代码求一个整数存储在内存中的二进制中1的个数

        方法一:我们可以想办法拿到二进制的每一位,然后统计1的个数。

        说起拿到二进制的每一位,就想到了我们之前的一个例题,其中有拿到十进制数的每一位的方法,通过模10除10即可;同样的,我们也可以通过模2除2来得到二进制数的每一位。

        10的二进制表示为1010,有2个1。 看似我们完成了要求,但当我们输入负数的时候,结果却是错的。原因在于形参是有符号的整型,我们把形参定义为无符号的整型,就可以解决问题。

        方法二:对整数二进制的最低位与1再向右移位,循环执行。这个方法不用关心是不是有符号无符号数的问题。

        我们利用按位与的特点,如果二进制最低位是1,按位与1得到1;如果二进制最低位是0,按位与1得到0;再循环执行,我们就能得到二进制中1的个数。

        这个方法也是可行的, 但它还不是最优的。

        方法三:其实有一个专门用来计算一个数的二进制表示中有多少个1的算法:n &= (n - 1)

         这个算法牛逼的地方在于,n &= (n - 1) 这个式子执行一次,二进制表示的数就会少一个1,执行多少次,就有多少个1;也就是说输入的数有几个1就执行几次,效率很高

        这种算法除非见过,一般人还真想不出来,不过我们记住就行,不必太执着其中的原理。

例题3:判断一个数是不是2的次方数

        2的次方数,有没有什么特点呢?通过上面我们了解了二进制,很容易就能想到,2的次方数二进制表示中只有一个1,那我们利用上面方法三中的代码判断结果是不是1就行了。虽然能解决问题,但是这个方法有点啰嗦。

        我们知道2的次方数二进制表示中只有一个1,而 n &= (n - 1) 这个式子执行一次,二进制表示的数就会少一个1,那如果 n &= (n - 1) 等于0的话,不就说明 n 是2的次方数吗?

 例题4:二进制位置0或置1

              编写代码将11二进制表示的第五位修改为1,然后再改回0。

        11的二进制表示:00000000000000000000000000001011

        修改第五位为1:  00000000000000000000000000011011

        再将第五位改回:00000000000000000000000000001011

        只改第五位,其他位不能改变要怎么实现呢?这就要用到我们学过的按位或(|)操作符了,我们知道,按位或操作符的规则是有1则为1,那我们给11的二进制按位或00000000000000000000000000010000就可以实现只修改第五位而其他位不变的效果,而这个数我们只需要给1向左移4位就能得到。

        那再将第五位修改回来,方法应该也跟上面差不多。这里就要用到按位与(&)操作符,我们知道按位与操作符的规则是有0则为0,那我们给修改过的数按位与上11111111111111111111111111101111就可以实现只修改第五位而保持其他位不变的效果,而这个数我们只需要给1向左移4位再按位取反就能得到。

        通过上面几个例题,我们可以深刻体会到操作符背后强大的功能,而这些作用我们在没有深入学习之前可能根本想象不到。 操作符的作用是很大的,尤其是在嵌入式中,使用操作符来实现一些功能及其频繁。

 5、逗号表达式

        逗号表达式,就是用逗号隔开的多个表达式。逗号表达式从左向右依次执行,整个表达式的结果是最后一个表达式的结果。

        注意:千万不要想当然的以为整个表达式的结果是最后一个表达式的结果就直接去算最后一个表达式,一定要从左到右每个表达式都执行。 

        另外,逗号表达式还有一个神奇的用法,来看示例:

        这两个代码的效果是一样的,第二种运用了逗号表达式从左向右依次执行的特点,使代码更简单一些。 

                                         点击跳转主页—> 💥个人主页小羊在奋斗

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/316546.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Springboot的点餐平台

基于SpringbootVue的点餐平台的设计与实现 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringbootMybatis工具&#xff1a;IDEA、Maven、Navicat 系统展示 用户登录 首页展示 菜品信息 菜品资讯 购物车 后台登录 用户管理 菜品分类管理 菜品信息管理 …

【Linux】dlopen: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29‘ not found

[30116] Error loading Python lib /tmp/_MEIlvdUu6/libpython3.8.so.1.0: dlopen: /lib/x86_64-linux-gnu/libm.so.6: version GLIBC_2.29 not found (required by /tmp/_MEIlvdUu6/libpython3.8.so.1.0)1 cd到指定路径 cd /usr/local 2 下载 wget http://ftp.gnu.org/gnu/gl…

NXP i.MX8系列平台开发讲解 - 3.10 Linux PCIe资源分配与访问(二)

专栏文章目录传送门&#xff1a;返回专栏目录 目录 1. PCIe BFD 2. PCIe 配置空间 2.1 PCIe 配置空间访问 PCIe I/O访问方法 PCIe MMIO访问方法 3. PCIe BAR相关 4. PCIe Capbility 5. PCIe 操作 本文将重点讲解PCIe的资源访问相关内容&#xff0c;对于PCIe资源访问是从…

设计不外流,保护创意的同时锁住图纸安全!

在设计行业中&#xff0c;图纸和创意文稿的安全至关重要&#xff0c;因为它们体现了企业的创新能力和核心竞争力。华企盾DSC数据防泄密系统提供了一系列功能&#xff0c;可以有效地保护这些珍贵的设计和文档不被外泄。以下是如何利用华企盾DSC系统保障设计图纸安全的关键措施&a…

【工具】-根源上解决VScode打印输出乱码的问题

目录 1 第一步&#xff1a; 改编译命令&#xff0c;保持一致2 第二步&#xff1a; 更改VScode的编码格式-保持一致 1 第一步&#xff1a; 改编译命令&#xff0c;保持一致 看一下你的控制台的编译的命名后缀&#xff0c;有两个关键的参数&#xff0c;如下图&#xff1a; “-f…

LT9611UXC双端口 MIPI DSI/CSI 转 HDMI2.0,带音频

1. 说明 LT9611UXC 是一款高性能 MIPI DSI/CSI 至 HDMI2.0 转换器。MIPI DSI/CSI 输入具有可配置的单端口或双端口&#xff0c;具有 1 个高速时钟通道和 1~4 个高速数据通道&#xff0c;工作速率最高为 2Gbps/通道&#xff0c;可支持高达 16Gbps 的总带宽。 LT9611UXC 支持突发…

双目深度估计原理立体视觉

双目深度估计原理&立体视觉 0. 写在前面1. 双目估计的大致步骤2. 理想双目系统的深度估计公式推导3. 双目标定公式推导4. 极线校正理论推导 0. 写在前面 双目深度估计是通过两个相机的对同一个点的视差来得到给该点的深度。 标准系统的双目深度估计的公式推导需要满足:1)两…

【算法每日一练】

蛮有意思的的一道题&#xff0c;最后要判断能否成为一种1~n的全排列&#xff0c;我最这样做的&#xff1a; 整个数组先排序一下。假设遍历到了i&#xff0c;那就判断前面b和r的个数&#xff0c;但是有想到了后面可能还会对前面的结果产生影响&#xff0c;所以就抛弃了这个想法…

二、再识VUE-MVVM

一、初识VUE 二、再识VUE-MVVM 三、VUE数据代理 MVVM Vue.js 专注于 MVVM 模型的 ViewModel 层。它通过双向数据绑定把 View 层和 Model 层连接了起来。实际的 DOM 封装和输出格式都被抽象为了 Directives 和 Filters。 ViewModel 一个同步 Model 和 View 的对象。在 Vue.js…

Stable Diffusion基础:ControlNet之线稿成图

今天继续给大家分享Stable Diffusiion的基础能力&#xff1a;ControlNet之线稿成图。 所谓线稿就是由一条条的线段组成的图形&#xff0c;主要用于绘画和设计领域的打底稿、表达构想和预见最终效果。 所谓线稿成图就是利用 Stable Diffusion ControlNet 的能力&#xff0c;依…

极目楚天 共襄星汉 | 同元软控受邀参加2024年中国航天大会

4月23日至26日&#xff0c;2024 年中国航天大会&#xff08;CSC2024&#xff09;在湖北省武汉市成功举办。大会由中国宇航学会和中国航天基金会联合主办&#xff0c;以“极目楚天 共襄星汉”为主题&#xff0c;汇聚国内外航天领域知名专家、学者、管理者&#xff0c;深入探讨航…

el-date-picker 禁用时分秒选择(包括禁用下拉框展示)

2024.04.26今天我学习了对el-date-picker进行禁用时分秒&#xff0c; 在使用el-date-picker组件的时候&#xff0c;我们有可能遇到需要把时分秒的时间固定&#xff0c;然后并且不能让他修改&#xff1a; 1714120999296 比如右上角的这个时间&#xff0c;我们要给它固定是‘08:…

C++中auto关键字的用法详解

1.简介 auto作为一个C语言就存在的关键字&#xff0c;在C语言和C之间却有很大区别。 在C语言中auto修饰的变量&#xff0c;是具有自动存储器的局部变量&#xff0c;但因为局部变量默认类别默认是auto修饰导致一直没有人去使用它。 C11中&#xff0c;标准委员会赋予了auto全新…

红魔8/8Pro/8SPro手机升级安卓14版RedMagic9.0系统+降级出厂救砖刷机

红魔8系列手机也终于引来了安卓14系统的更新&#xff0c;该系统为最新的RedMagic9.0&#xff0c;目前属于公测版本&#xff0c;如果你已经升级了官方UI8.0最新版系统&#xff0c;并且拥有公测资格&#xff0c;可以直接在线检测到最新版UI9.0系统。9.0系统目前对比之前的8.0的版…

记录k8s以docker方式安装Kuboard v3 过程

原本是想通过在k8s集群中安装kuboad v3的方式安装kuboard&#xff0c;无奈在安装过程中遇到了太多的问题&#xff0c;最后选择了直接采用docker安装的方式&#xff0c;后续有时间会补上直接采用k8s安装kuboard v3的教程。 1.kuboard安装文档地址&#xff1a; 安装 Kuboard v3 …

【Jenkins】持续集成与交付 (一):深入理解什么是持续集成?

🟣【Jenkins】持续集成与交付 (一):深入理解什么是持续集成? 1、软件开发生命周期与持续集成2、 持续集成的流程3、持续集成的好处4、Jenkins的应用实践5、结语💖The Begin💖点点关注,收藏不迷路💖 1、软件开发生命周期与持续集成 软件开发生命周期(SDLC)是指软…

windows11安装nginx

1.解压nginx安装包到没有中文的目录 2.双击运行nginx.exe 3.任务管理器查看是否有nginx进程 4.任务管理器->性能->资源监视器 5.网络->侦听端口&#xff0c;查看nginx侦听的端口&#xff0c;这里是90端口

MySQL怎么看死锁记录

这个结果分成三部分&#xff1a; (1) TRANSACTION&#xff0c;是第一个事务的信息&#xff1b; (2) TRANSACTION&#xff0c;是第二个事务的信息&#xff1b; (3)WE ROLL BACK TRANSACTION (1)&#xff0c;是最终的处理结果&#xff0c;表示回滚了第一个事务。 第一个事务的信…

解决Linux CentOS 7安装了vim编辑器却vim编辑器不起作用、无任何反应

文章目录 前言一、解决vim不起作用&#xff08;卸载重新安装&#xff09;1.重新安装vim2.测试vim是否能正常使用 二、解决vim: error while loading shared libraries: /lib64/libgpm.so.2: file too short报错三、解决vim编辑器不能使用方向键和退格键问题 remove vim-common …

Scrapy 爬虫教程:从原理到实战

Scrapy 爬虫教程&#xff1a;从原理到实战 一、Scrapy框架简介 Scrapy是一个由Python开发的高效网络爬虫框架&#xff0c;用于从网站上抓取数据并提取结构化信息。它采用异步IO处理请求&#xff0c;能够同时发送多个请求&#xff0c;极大地提高了爬虫效率。 二、Scrapy运行原…