【算法基础实验】图论-UnionFind连通性检测之quick-union

Union-Find连通性检测之quick-union

理论基础

在图论和计算机科学中,Union-Find 或并查集是一种用于处理一组元素分成的多个不相交集合(即连通分量)的情况,并能快速回答这组元素中任意两个元素是否在同一集合中的问题。Union-Find 特别适用于连通性问题,例如网络连接问题或确定图的连通分量。

Union-Find 的基本操作

Union-Find 数据结构支持两种基本操作:

  1. Union(合并): 将两个元素所在的集合合并成一个集合。
  2. Find(查找): 确定某个元素属于哪个集合,这通常涉及找到该集合的“代表元素”或“根元素”。

Union-Find 的结构

Union-Find 通常使用一个整数数组来表示,其中每个元素的值指向它的父节点,这样形成了一种树形结构。集合的“根元素”是其自己的父节点。

Union-Find 的优化技术

为了提高效率,Union-Find 实现中常用两种技术:

  1. 路径压缩(Path Compression): 在执行“查找”操作时,使路径上的每个节点都直接连接到根节点,从而压缩查找路径,减少后续操作的时间。
  2. 按秩合并(Union by Rank): 在执行“合并”操作时,总是将较小的树连接到较大的树的根节点上。这里的“秩”可以是树的深度或者树的大小。

应用示例

Union-Find 算法常用于处理动态连通性问题,如网络中的连接/断开问题或者图中连通分量的确定。例如,Kruskal 的最小生成树算法就使用 Union-Find 来选择边,以确保不形成环路。

总结

Union-Find 是解决连通性问题的一种非常高效的数据结构。它能够快速合并集合并快速判断元素之间的连通性。通过路径压缩和按秩合并的优化,Union-Find 在实际应用中可以接近常数时间完成操作。因此,它在算法竞赛、网络连接和社交网络分析等领域有广泛的应用。

数据结构

private int[] id // 分量id(以触点作为索引)
private int count // 分量数量

实验数据和算法流程

本实验使用tinyUF.txt作为实验数据,数据内容如下,一共定义了10对连通性关系

10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7

实验的目的是检测数据中共有多少个连通分量,并打印每个元素所属的连通分量编号

下图展示了处理5和9连通性的一个瞬间

请添加图片描述

完整流程如下

请添加图片描述

代码实现

原则是小树挂在大树下,如果一棵高度为1,但是有100个节点的树,要把高度为2的三节点小树挂在这课大树上

可以想象如果反过来,大树挂在小树下,大树的100个节点都将变成高度为3的树枝,这样的话查询的整体成本就太高了

import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.StdIn;public class myQuickUnion {private int[] id;private int count;private int finds;private int[] size;public myQuickUnion(int N) { // 初始化分量id数组count = N;id = new int[N];for (int i = 0; i < N; i++) id[i] = i;size = new int[N];for (int i = 0; i < N; i++) size[i] = 1;}public boolean connected(int p, int q){return find(p) == find(q);}public int count(){ return count;}private int find(int p){while(p != id[p]){p = id[p];finds ++;}return p;}public void union(int p, int q){int pRoot = find(p);int qRoot = find(q);if(pRoot==qRoot) return;if(size[pRoot]<size[qRoot]){id[pRoot]=qRoot;size[qRoot]+=size[pRoot];}else{id[qRoot]=pRoot;size[pRoot]+=size[qRoot];}//id[pRoot] = qRoot;//此处注释掉的是随机将两棵树的根连接的表达式//根据实测,加权时总的find次数为2000左右,普通union为2万次左右count --;}public static void main(String[] args){int N = StdIn.readInt();myQuickUnion qu = new myQuickUnion(N);while(!StdIn.isEmpty()){int p = StdIn.readInt();int q = StdIn.readInt();if(qu.connected(p,q)) continue;qu.union(p,q);}StdOut.println("components: "+qu.count);for(int i=0;i<N;i++){StdOut.println(i+":"+qu.id[i]);}StdOut.println("find counts: "+qu.finds);}
}

代码详解

这段代码是一个实现了“加权快速合并”(Weighted Quick Union)的并查集算法的Java类 myQuickUnion。该算法用于处理大量元素的动态连通性问题,提高了普通快速合并(Quick Union)算法的效率。以下是对这段代码的详细解释:

类定义和变量


public class myQuickUnion {private int[] id;     // id数组,用于保存每个节点的父节点private int count;    // 连通分量的数量private int finds;    // 进行find操作的次数统计private int[] size;   // 每个根节点相应的分量大小
  • id 数组中,每个位置保存了该位置元素的父节点索引。
  • count 记录当前图中连通分量的数量。
  • finds 用于记录执行 find 操作的次数,有助于分析算法性能。
  • size 数组用于保存以每个节点为根的树的大小。

构造函数


public myQuickUnion(int N) {count = N;id = new int[N];for (int i = 0; i < N; i++) id[i] = i;size = new int[N];for (int i = 0; i < N; i++) size[i] = 1;
}

构造函数初始化了 id 数组和 size 数组。id 数组的每个元素初始指向自身,表示每个元素都是自己的根节点。size 数组中的每个元素初始为 1,表示每个根节点的树大小为 1。

方法实现

connected


public boolean connected(int p, int q) {return find(p) == find(q);
}

检查两个元素是否连通,即它们是否有相同的根。

find


private int find(int p) {while (p != id[p]) {p = id[p];finds++;}return p;
}

找到元素 p 的根节点。这里使用了路径压缩的一种简单形式,在找根的过程中顺便统计操作次数。

union


public void union(int p, int q) {int pRoot = find(p);int qRoot = find(q);if (pRoot == qRoot) return;if (size[pRoot] < size[qRoot]) {id[pRoot] = qRoot;size[qRoot] += size[pRoot];} else {id[qRoot] = pRoot;size[pRoot] += size[qRoot];}count--;
}

合并两个元素所在的树。如果一个树的大小小于另一个,小的树的根节点将指向大的树的根节点,并更新树的大小。这种“按大小加权”的策略有助于减少树的高度,从而提高后续操作的效率。

主函数


public static void main(String[] args) {int N = StdIn.readInt();myQuickUnion qu = new myQuickUnion(N);while (!StdIn.isEmpty()) {int p = StdIn.readInt();int q = StdIn.readInt();if (qu.connected(p, q)) continue;qu.union(p, q);}StdOut.println("components: " + qu.count);for (int i = 0; i < N; i++) {StdOut.println(i + ":" + qu.id[i]);}StdOut.println("find counts: " + qu.finds);
}

在主函数中,从标准输入读取元素数量和成对的整数。每对整数代表一次尝试连接的操作。如果两个元素已经连通,则忽略;否则,进行合并操作。最终,输出连通分量的数量、每个元素的最终根,以及进行 find 操作的总次数。

实验

代码编译

$ javac myQuickUnion.java

代码运行

该算法处理tinyUF.txt时由于使用了加权方法,优先将小树挂在大树下,这样可以极大减少find操作的次数,提高了性能,在打印中可以看到find counts的值为13,即一共执行了13次find,

$ java myQuickUnion < ..\data\tinyUF.txt 
components: 2
0:6
1:2
2:6
3:4
4:4
5:6
6:6
7:2
8:4
9:4
find counts: 13

如果将权重处理注释掉,使用普通quick-union方法,find counts数值会变为16,影响性能

如果导入mediumUF.txt或者largeUF.txt数据,这个差距将更加悬殊

请添加图片描述

java myQuickUnion < ..\data\tinyUF.txt
components: 2
0:1
1:1
2:1
3:8
4:3
5:0
6:5
7:1
8:8
9:8
find counts: 16

参考资料

算法(第四版) 人民邮电出版社

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/316645.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PHP源码_最新在线工具箱网站系统源码

项目运行截图 源码贡献 https://githubs.xyz/boot?app41 部分数据库表 SET NAMES utf8mb4; SET FOREIGN_KEY_CHECKS 0;-- ---------------------------- -- Table structure for toolbox_category -- ---------------------------- DROP TABLE IF EXISTS toolbox_category…

StarRocks x Paimon 构建极速实时湖仓分析架构实践

Paimon 介绍 Apache Paimon 是新一代的湖格式&#xff0c;可以使用 Flink 和 Spark 构建实时 Lakehouse 架构&#xff0c;以进行流式处理和批处理操作。Paimon 创新性地使用 LSM&#xff08;日志结构合并树&#xff09;结构&#xff0c;将实时流式更新引入 Lakehouse 架构中。 …

医学vr虚拟仿真综合实验教学平台为科研教学提供了坚实的基础

在兽医专业的广袤领域中&#xff0c;动物解剖学作为基石学科&#xff0c;为组织胚胎学、生理学、病理解剖学、外科手术学、临床诊断学等科研教学提供了坚实的基础。而如今&#xff0c;随着科技的飞速发展&#xff0c;我们迎来了一个全新的学习时代——3D数字动物解刨虚拟仿真实…

[iOS]使用CocoaPods发布公开库

1.检查库名是否已被占用 选择库名时&#xff0c;尽量选择具有描述性并且独特的名字&#xff0c;这不仅可以避免命名冲突&#xff0c;还可以帮助用户更好地理解库的用途和功能。 在实际创建和发布 CocoaPods 库之前&#xff0c;确实应该检查库名是否已经被占用&#xff0c;以避…

AutoCAD 2025 for mac/win:设计未来,触手可及

在数字化时代&#xff0c;设计不再局限于纸笔之间&#xff0c;而是跃然于屏幕之上&#xff0c;AutoCAD 2025正是这一变革的杰出代表。无论是Mac用户还是Windows用户&#xff0c;AutoCAD 2025都以其卓越的性能和出色的用户体验&#xff0c;成为了CAD设计绘图领域的佼佼者。 Aut…

Vuforia AR篇(三)— AR模型出场效果

目录 前言一、AR模型出场二、AR出场特效三、添加过渡效果四、效果 前言 在这个数字化日益增长的时代&#xff0c;增强现实&#xff08;AR&#xff09;技术正以前所未有的速度发展。AR模型&#xff0c;作为这一技术的核心组成部分&#xff0c;不仅改变了我们与数字世界的互动方…

【MATLAB源码-第201期】基于matlab的黏菌群优化算法(SMA)无人机三维路径规划,输出做短路径图和适应度曲线

操作环境&#xff1a; MATLAB 2022a 1、算法描述 黏菌优化算法&#xff08;Slime Mould Algorithm, SMA&#xff09;是一种新颖的启发式优化方法&#xff0c;其灵感来源于自然界中的真菌——黏菌。这种算法模拟了黏菌在寻找食物时的行为和网络形成策略。在本文中&#xff0c…

Python | Leetcode Python题解之第58题最后一个单词的长度

题目&#xff1a; 题解&#xff1a; class Solution:def lengthOfLastWord(self, s: str) -> int:ls[]for i in s.split():ls.append(i)return len(ls[-1])

【华为】NAT的分类和实验配置

【华为】NAT的分类和实验配置 NAT产生的技术背景IP地址分类NAT技术原理NAT分类静态NAT动态NATNAPTEasy IP&#xff08;PAT&#xff09;NAT Server 配置拓扑静态NAT测试抓包 动态NAT测试抓包 NAPT测试抓包 PAT测试抓包 NAT Server检测抓包 PC1PC2服务器 NAT产生的技术背景 随着…

排序算法:插入、希尔、选择、推排、冒泡、快速、归并排序

排序算法 目录 前言 一、排序的概念 1.1排序的概念 1.2 常见的排序算法 二、常见排序算法的实现 2.1 插入排序 2.2 希尔排序 2.3 选择排序 2.4 堆排序 2.5 冒泡排序 2.6 快速排序 2.6.1 hoare版本 2.6.2 前后指针版本 2.6.3 非递归版本 2.7 归并排序 归并排序 2.8 计数排序 三、…

Android视角看鸿蒙第十二课-鸿蒙的布局之相对布局RelativeContainer

Android视角看鸿蒙第十二课-鸿蒙的布局之相对布局RelativeContainer 导读 相对布局和线性、层叠布局一样都是类似于Android布局的&#xff0c;之前两篇文章已经了解线性、层叠布局的使用方法&#xff0c;这篇文章一起来学习下鸿蒙中的相对布局。 之前的文章中&#xff0c;我偶…

10.MMD 室内场景导入背景视频和灯光

导入背景视频 1. 导入人物和场景 场景是Akali’s room&#xff0c;可以在墙壁上添加视频 先添加主场景 2. 修改视频文件格式 在背景里选择导入背景视频文件 需要将mp4视频格式转化为AVI格式 方法一 先将视频导入格式工厂 点击配置 将视频编码改成DivX 再开始处理 …

数据结构八:线性表之循环队列的设计

上篇博客&#xff0c;学习了栈&#xff0c;我们可以知道他也是一种线性表&#xff0c;遵从先进后出的原则&#xff0c;在本节&#xff0c;我们进一步学习另一种线性表—队列。就像饭堂里排队打饭的的队伍&#xff0c;作为一种先进先出的线性表&#xff0c;他又有哪些特别之处呢…

敏捷之Scrum开发

目录 一、什么是 Scrum 1.1 Scrum 的定义 二、Scrum 迭代开发过程 2.1 迭代开发过程说明 2.1.1 开发方法 2.1.1.1 增量模型 2.1.1.1.1 定义 2.1.1.1.2 模型方法说明 2.1.1.2 迭代模型 2.1.1.2.1 定义 2.1.1.2.2 模型方法说明 2.1.2 迭代过程 2.1.2.1 产品需求Produ…

windows下安装onlyoffice

文章目录 1、 安装ErLang2、 安装rabbitmq3、 安装postgresql4、 安装onlyoffice(社区版) 1、 安装ErLang 下载地址&#xff1a;https://erlang.org/download/otp_win64_24.2.exe opt_wind64_24.2.exe 直接运行&#xff0c;一步一步安装 2、 安装rabbitmq 下载地址&#xf…

【003_音频开发_基础篇_Linux进程通信(20种你了解几种?)】

003_音频开发_基础篇_Linux进程通信&#xff08;20种你了解几种&#xff1f;) 文章目录 003_音频开发_基础篇_Linux进程通信&#xff08;20种你了解几种&#xff1f;)创作背景Linux 进程通信类型fork() 函数fork() 输出 2 次fork() 输出 8 次fork() 返回值fork() 创建子进程 方…

JAVA:maven-->>检查 所有依赖 与 环境 兼容

内容 为了确保你项目中的所有依赖都彼此兼容&#xff0c;并与你的环境相适应&#xff0c;你可以利用 Maven 的依赖管理功能。Maven 有助于解决、升级&#xff0c;并对齐所有库的版本&#xff0c;以避免任何不一致或冲突。以下是检查兼容性的步骤&#xff1a; ### 检查兼容性的…

Pulsar Meetup 深圳 2024 会务介绍

“ Hi&#xff0c;各位热爱 Pulsar 的小伙伴们&#xff0c;Pulsar Meetup 深圳 2024 报名倒计时啦&#xff0c;快来报名。这里汇集了腾讯、华为和谙流科技等大量 Pulsar 大咖&#xff0c;干货多多&#xff0c;礼品多多&#xff0c;不容错过啊。 ” 活动介绍 由 AscentStream 谙…

C语言:插入排序

插入排序 1.解释2.步骤3.举例分析示例结果分析 1.解释 插入排序是一种简单直观的排序算法&#xff0c;它的工作原理是通过构建有序序列&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置并插入。插入排序在实现上&#xff0c;通常采…

[Android]Jetpack Compose加载图标和图片

一、加载本地矢量图标 在 Android 开发中使用本地矢量图标是一种常见的做法&#xff0c;因为矢量图标&#xff08;通常保存为 SVG 或 Android 的 XML vector format&#xff09;具有可缩放性和较小的文件大小。 在 Jetpack Compose 中加载本地矢量图标可以使用内置的支持&…