机器学习实战 —— 工业蒸汽量预测(二)

目录

  • 文章描述
  • 背景描述
  • 数据说明
  • 数据来源
  • 实战内容
    • 2.数据特征工程
      • 2.1数据预处理和特征处理
        • 2.1.1 异常值分析
        • 2.1.2 归一化处理
        • 2.1.3 特征相关性
      • 2.2 特征降维
        • 2.2.1 相关性初筛
        • 2.2.2 多重共线性分析
        • 2.2.3 PCA处理降维

文章描述

  • 数据分析:查看变量间相关性以及找出关键变量。
    机器学习实战 —— 工业蒸汽量预测(一)
  • 数据特征工程对数据精进:异常值处理、归一化处理以及特征降维。
    机器学习实战 —— 工业蒸汽量预测(二)
  • 模型训练(涉及主流ML模型):决策树、随机森林,lightgbm等。
    机器学习实战 —— 工业蒸汽量预测(三)
  • 模型验证:评估指标以及交叉验证等。
    机器学习实战 —— 工业蒸汽量预测(四)
  • 特征优化:用lgb对特征进行优化。
    机器学习实战 —— 工业蒸汽量预测(五)
  • 模型融合:进行基于stacking方式模型融合。
    机器学习实战 —— 工业蒸汽量预测(六)

背景描述

  • 背景介绍

火力发电的基本原理是:燃料在燃烧时加热水生成蒸汽,蒸汽压力推动汽轮机旋转,然后汽轮机带动发电机旋转,产生电能。在这一系列的能量转化中,影响发电效率的核心是锅炉的燃烧效率,即燃料燃烧加热水产生高温高压蒸汽。锅炉的燃烧效率的影响因素很多,包括锅炉的可调参数,如燃烧给量,一二次风,引风,返料风,给水水量;以及锅炉的工况,比如锅炉床温、床压,炉膛温度、压力,过热器的温度等。

  • 相关描述

经脱敏后的锅炉传感器采集的数据(采集频率是分钟级别),根据锅炉的工况,预测产生的蒸汽量。

  • 结果评估

预测结果以mean square error作为评判标准。

数据说明

数据分成训练数据(train.txt)和测试数据(test.txt),其中字段”V0”-“V37”,这38个字段是作为特征变量,”target”作为目标变量。选手利用训练数据训练出模型,预测测试数据的目标变量,排名结果依据预测结果的MSE(mean square error)。

数据来源

http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_test.txt

http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_train.txt

实战内容

2.数据特征工程

2.1数据预处理和特征处理

导入包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as snsfrom scipy import statsimport warnings
warnings.filterwarnings("ignore")%matplotlib inline# 读取数据
train_data_file = "./zhengqi_train.txt"
test_data_file =  "./zhengqi_test.txt"train_data = pd.read_csv(train_data_file, sep='\t', encoding='utf-8')
test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')

数据总览

train_data.describe()

在这里插入图片描述

2.1.1 异常值分析

异常值分析

plt.figure(figsize=(18, 10))
plt.boxplot(x=train_data.values,labels=train_data.columns)
plt.hlines([-7.5, 7.5], 0, 40, colors='r')
plt.show()

在这里插入图片描述

删除异常值

train_data = train_data[train_data['V9']>-7.5]
train_data.describe()

在这里插入图片描述

test_data.describe()

在这里插入图片描述

2.1.2 归一化处理
from sklearn import preprocessing features_columns = [col for col in train_data.columns if col not in ['target']]min_max_scaler = preprocessing.MinMaxScaler()min_max_scaler = min_max_scaler.fit(train_data[features_columns])train_data_scaler = min_max_scaler.transform(train_data[features_columns])
test_data_scaler = min_max_scaler.transform(test_data[features_columns])train_data_scaler = pd.DataFrame(train_data_scaler)
train_data_scaler.columns = features_columnstest_data_scaler = pd.DataFrame(test_data_scaler)
test_data_scaler.columns = features_columnstrain_data_scaler['target'] = train_data['target']train_data_scaler.describe()test_data_scaler.describe()

在这里插入图片描述

查看数据集情况

在这里插入图片描述

查看特征’V5’, ‘V17’, ‘V28’, ‘V22’, ‘V11’, 'V9’数据的数据分布

在这里插入图片描述

这几个特征下,训练集的数据和测试集的数据分布不一致,会影响模型的泛化能力,故删除这些特征

2.1.3 特征相关性

在这里插入图片描述

2.2 特征降维

在这里插入图片描述

2.2.1 相关性初筛

在这里插入图片描述

2.2.2 多重共线性分析

在这里插入图片描述

2.2.3 PCA处理降维
from sklearn.decomposition import PCA   #主成分分析法#PCA方法降维
#保持90%的信息
pca = PCA(n_components=0.9)
new_train_pca_90 = pca.fit_transform(train_data_scaler.iloc[:,0:-1])
new_test_pca_90 = pca.transform(test_data_scaler)
new_train_pca_90 = pd.DataFrame(new_train_pca_90)
new_test_pca_90 = pd.DataFrame(new_test_pca_90)
new_train_pca_90['target'] = train_data_scaler['target']
new_train_pca_90.describe()

在这里插入图片描述

train_data_scaler.describe()

在这里插入图片描述

PCA方法降维

保留16个主成分

pca = PCA(n_components=0.95)
new_train_pca_16 = pca.fit_transform(train_data_scaler.iloc[:,0:-1])
new_test_pca_16 = pca.transform(test_data_scaler)
new_train_pca_16 = pd.DataFrame(new_train_pca_16)
new_test_pca_16 = pd.DataFrame(new_test_pca_16)
new_train_pca_16['target'] = train_data_scaler['target']
new_train_pca_16.describe()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/317040.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AcrelEMS-MH民航机场智慧能源管平台解决方案【可靠供电/降低能耗/高效运维】

民航机场行业背景 自2012年以来,我国民航运输规模出现了显著增长,旅客运输量:从2012年的3.19亿人次上升至2019年的6.6亿人次(注:为剔除疫情影响,此处采取疫情前2019年的数据,下同)&…

时间序列分析-无模型

本节内容介绍了无模型的时间序列分析方法,包括时间序列作趋势图、逐年分解、时间序列分解、直方图、ACF与PACF图,主要是作图。 首先导入数据和对应的库: import pandas as pd import numpy as np import matplotlib.pyplot as plt import se…

音视频入门基础:像素格式专题(1)——RGB简介

一、像素格式简介 像素格式(pixel format)指像素色彩按分量的大小和排列。这种格式以每个像素所使用的总位数以及用于存储像素色彩的红、绿、蓝和 alpha 分量的位数指定。在音视频领域,常用的像素格式包括RGB格式和YUV格式,本文…

记一次使用Notepad++正则表达式批量替换SQL语句

目录 一、需求二、解决方案三、正则解析 一、需求 存在如下SQL建表脚本: CREATE TABLE "BUSINESS_GOODS" ( "ID" VARCHAR(32) NOT NULL, "GOODS_CODE" VARCHAR(50), "GOODS_NAME" VARCHAR(100), ... NOT CLUSTER PRIMARY…

Flutter笔记:Widgets Easier组件库(2)阴影盒子

Flutter笔记 Widgets Easier组件库(2):阴影盒子 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress o…

搭建大型分布式服务(三十七)SpringBoot 整合多个kafka数据源-取消限定符

系列文章目录 文章目录 系列文章目录前言一、本文要点二、开发环境三、原项目四、修改项目五、测试一下五、小结 前言 本插件稳定运行上百个kafka项目&#xff0c;每天处理上亿级的数据的精简小插件&#xff0c;快速上手。 <dependency><groupId>io.github.vipjo…

基于 React 的图形验证码插件

react-captcha-code NPM 地址 &#xff1a; react-captcha-code - npm npm install react-captcha-code --save 如下我自己的封装&#xff1a; import Captcha from "react-captcha-code";type CaptchaType {captchaChange: (captchaInfo: string) > void;code…

Centos7+Hadoop3.3.4+KDC1.15+Ranger2.4.0集成

一、集群规划 本次测试采用3台虚拟机&#xff0c;操作系统版本为centos7.6。 kerberos采用默认YUM源安装&#xff0c;版本为&#xff1a;1.15.1-55 Ranger版本为2.4.0 系统用户为ranger:ranger IP地址主机名KDCRanger192.168.121.101node101.cc.localKDC masterRanger Admin…

关于下载上传的sheetjs

一、背景 需要讲后端返回来的表格数据通过前端设置导出其中某些字段&#xff0c;而且得是xlsx格式的。 那就考虑使用控件SheetJS。如果是几年前&#xff0c;一般来说&#xff0c;保存excel的文件都是后端去处理&#xff0c;处理完成给前端一个接口&#xff0c;前端调用了打开…

Java根据模板动态生成Pdf(添加页码、文件加密、Spire免费版本10页之后无法显示问题、嵌入图片添加公章、转Base64)

Java根据模板动态生成Pdf&#xff1a;添加页码、文件加密、Spire免费版本10页之后无法显示问题、嵌入图片添加公章、转Base64 引言【Java根据模板动态生成Pdf资源地址】示例一&#xff1a;动态生成带页码的PDF报告示例二&#xff1a;加密PDF以保护敏感信息示例三&#xff1a;应…

基于Matlab使用深度学习的多曝光图像融合

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景 在图像处理领域&#xff0c;多曝光图像融合技术是一种重要的技术&#xff0c;它可以将不同曝光条件下…

详解centos8 搭建使用Tor 创建匿名服务和匿名网站(.onion)

1 Tor运行原理&#xff1a; 请求方需要使用&#xff1a;洋葱浏览器&#xff08;Tor Browser&#xff09;或者Google浏览器来对暗&#xff0c;网网站进行访问 响应放需要使用&#xff1a;Tor协议的的Hidden_service 2 好戏来了 搭建步骤&#xff1a; 1.更新yum源 rpm -Uvh h…

代码随想录——双指针与滑动窗口(四)

一.1423. 可获得的最大点数 题目详情 解题思路 这里我们每次只能取最左或最右边的卡牌,第一反应其实是使用双指针&#xff0c;通过局部贪心来解决&#xff0c;但是如果两边相等的话用局部贪心无法来判断到底取哪一边&#xff0c;那我们不妨换一个思路&#xff1a; 我们首先任…

avl excite python二次开发1--python解释器需用内置解释器aws_cmd

avl excite python二次开发1--python解释器需用内置解释器aws_cmd 1、python解释器问题1.1、用外置python解释器&#xff0c;import WSInterface会失败(WSInterface.pyd)1.2、用内置解释器aws_cmd运行py脚本1.3 用内置解释器aws_python执行脚本三级目录 1、python解释器问题 1…

如何打包VUE3项目并且部署到tomcat服务器上运行

创作灵感 最近在学习vue时&#xff0c;发现一件非常尴尬的事情——那就是学了、写了这么久的vue项目&#xff0c;但好像还没有真正的将vue项目打包部署过。 然后在尝试打包并部署vue项目的时候&#xff0c;遇到了一些问题&#xff0c;所以我对这些问题进行了总结&#xff0c;…

【数据结构】为了节省空间,对于特殊矩阵我们可以这样做……

特殊矩阵的压缩存储 导读一、数组与矩阵1.1 数组1.2 数组与线性表1.3 数组的存储结构1.4 矩阵在数组中的存储1.4.1 行优先存储1.4.2 列优先存储 二、特殊矩阵及其压缩存储三、对称矩阵及其存储3.1 方阵与对称矩阵3.2 对称矩阵的存储3.3 压缩存储的手动实现3.3.1 行优先存储3.3.…

上传jar到github仓库,作为maven依赖存储库

记录上传maven依赖包到github仓库问题 利用GitHubPackages作为依赖的存储库踩坑1 仓库地址问题踩坑2 Personal access tokens正确姿势一、创建一个普通仓库&#xff0c;比如我这里是fork的腾讯Shadow到本地。地址是&#xff1a;https://github.com/dhs964057117/Shadow二、生成…

单片机通讯协议

参考&#xff1a;江科大单片机教程 STM32入门教程-2023版 细致讲解 中文字幕_哔哩哔哩_bilibili IIC通讯协议SPI通信协议UARTCANUSB速度100k-400khz4Mhz-线数2 CLK,DATA4CLK,ENB,IO,OI额外设备一主多从一主多从 一般不用自己写&#xff0c;都有相应的库或官方提供相应的&#…

学习 Rust 第 23 天:闭包

Rust 闭包提供了简洁、富有表现力的匿名函数来捕获周围的变量。它们简化了代码&#xff0c;提供了存储、参数传递和函数重构方面的灵活性。它们与泛型的交互增强了灵活性&#xff0c;而捕获模式则促进了有效的所有权和可变性管理。从本质上讲&#xff0c;闭包是 Rust 的基础&am…

c#数据库: 9.删除和添加新字段/数据更新

先把原来数据表的sexy字段删除,然后重新在添加字段sexy,如果添加成功,sexy列的随机内容会更新.原数据表如下: using System; using System.Collections.Generic; using System.Data; using System.Data.Common; using System.Data.SqlClient; using System.Linq; using System.…