人脸识别概念解析

目录

1. 概述

2. 人脸检测

3. 人脸跟踪

4. 质量评价

5. 活体检测

6. 特征提取

7. 人脸验证

8. 人脸辨识


1. 概述

        人脸识别在我们的生活中随处可见,例如在大楼门禁系统中,它取代了传统的门禁卡或密码,提高了进出的便捷性和安全性。在商场安保方面,人脸识别被广泛应用于监控系统,有助于识别和跟踪潜在的犯罪嫌疑人或失踪人员,提升了安全防范的能力。另外,手机解锁也是人脸识别技术的重要应用之一,它为用户提供了一种快捷、便利的身份验证方式,替代了传统的密码或指纹识别。

        人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术,主要用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行识别的一系列相关技术。可以集成到产品或系统中,实现基于人脸识别的身份管理、人证核验等功能,可应用于智慧金融、智慧安防等场景。

        人脸识别算法主要涉及人脸图像采集、人脸检测、人脸跟踪、活体检测、人脸图像质量评价、人脸特征提取与比对等一系列技术。

2. 人脸检测

        通过摄像头采集到的人脸图像,除了人脸部分之外还包含大量的背景信息,需要经过人脸检测算法获得人脸在图像中位置和角度等信息,并经过相似变换得到规范化的人脸图像后才能使用识别算法提取人脸特征和比对。

        因为人脸可能出现在图像中任意位置且具有任意大小,人脸检测算法需要对所有的位置和大小进行判断。

        人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形。

        常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相关。开发过程中,我们可以通过设置“输入图像尺寸”、或“最小脸尺寸限制”、或“人脸数量上限”的方式来加速算法。

3. 人脸跟踪

        在视频中,从检测到人脸帧开始 ,在连续的后续帧中,对目标人脸的运动轨迹和轮廓变化进行持续分析与跟踪。在跟踪过程中,需要用唯一的编号来区分每个被跟踪的人脸,这个编号称为PID。

        在连续的视频帧中,当一个人进入视频画面直到离开,其PID不变,通过PID来标识同一个人,只需做一次人脸识别,从而有效提高人脸识别的效率,节省设备算力。

4. 质量评价

        人脸识别系统对输入的人脸图像的质量非常敏感,当输入的人脸图像出现光照变化、脸部旋转、画面模糊、表情夸张等情况时,其识别率会显著下降。低质量的人脸图像可能是引起人脸识别系统匹配错误的主要原因,也直接导致了很多系统无法在实际中使用。

        因此,需要在人脸图像检测阶段,建立一个对人脸图像质量的评价机制,通过评价结果对采集到的人脸图像进行筛选,当图像质量高于一定阈值时才会被送到识别系统中进行识别,否则图像将被丢弃,不做处理。

        《GB ∕ T 41772-2022 信息技术 生物特征识别 人脸识别系统技术要求》给出了人脸图像质量评价标准如下表所示。

项目

要求

注册人脸样本

配合式待识别样本

非配合式待识别样本

人脸大小

两眼瞳间距

≥ 60像素

≥ 55像素

≥ 40像素

清晰度

高斯模糊

<0.24

<0.25

<0.30

运动模糊

<0.15

<0.20

<0.26

拉普拉斯方差

≥ 500

≥ 350

≥ 200

姿态

水平转动角

-10° ~ 10°

-20° ~ 20°

-45° ~ 45°

俯仰角

-10° ~ 10°

-15° ~ 15°

-20° ~25°

倾斜角

-10° ~ 10°

-15° ~ 15°

-25° ~25°

完整度

几何失真

≤ 5%

≤ 10%

≤ 15%

眉毛可见度

100%

≥ 90%

≥ 75%

眼睛可见度

100%

100%

100%

鼻子可见度

100%

≥ 95%

≥ 85%

嘴巴可见度

100%

100%

100%

面颊皮肤可见度

100%

≥ 85%

≥ 75%

保真度

化妆和修图情况

未化妆修图

未化妆修图

未化妆修图

光照

均匀性

无光斑和阴阳脸

无光斑和阴阳脸

无光斑和阴阳脸

整体亮暗

无过曝和欠曝

无过曝和欠曝

无过曝和欠曝

灰度级

256级

256级

256级

灰度动态范围

(85~200灰度值占比)

> 95%

> 90%

> 80%

表情

表情类别

中性

中性或微笑

中性或微笑

眼睛睁闭

自然睁开

自然睁开

自然睁开

嘴巴张合

自然闭合

自然闭合或微笑

自然闭合或微笑

5. 活体检测

        活体检测是判断人脸图像是来自真人还是来自攻击假体(照片、视频等)的方法。

        人脸识别系统存在被伪造攻击的风险。因此需要在人脸识别系统中加入活体检测,验证用户是否为真实活体本人操作,以防止照片、视频、以及三维模型的入侵,从而帮助用户甄别欺诈行为,保障用户的利益。

        活体检测分为静默活体检测和配合式活体检测。配合式活体检测即“张张嘴”、“眨眨眼”、“摇摇头”之类;多应用于APP刷脸登录、注册等。静默活体检测是不需要任何动作配合,通过算法和摄像头的配合,进行活体判定;使用起来非常方便,用户在无感的情况下就可以通过检测比对,效率非常高。

        《GB∕T 41772-2022 信息技术 生物特征识别 人脸识别系统技术要求》给出了假体攻击类型包括不限于二维假体攻击和三维假体攻击,如下表所示。

二维假体攻击

二维静态纸张图像攻击

样本材质

打印纸、亚光相纸、高光相纸、绒面相纸、哑粉纸、铜版纸等

样本质量

分辨率、清晰度、大小、角度、光照条件、完整度等

呈现方式

距离、角度、移动、弯曲、折叠等

裁剪方式

图像是否扣除眼部、鼻子、嘴巴等

二维静态电子图像攻击

设备类型

移动终端、微型计算机等

设备显示性能

分辨率、亮度、对比度等

样本质量

分辨率、清晰度、大小、角度、光照条件、完整度等

呈现方式

距离、角度、移动等

二维动态图像攻击

图像类型

录制视频、合成视频等

设备类型

移动终端、微型计算机等

设备显示性能

分辨率、亮度、对比度等

图像质量

分辨率、清晰度、帧率等

呈现方式

距离、角度、移动等

三维假体攻击

三维面具攻击

面具材质

塑料面具、三维纸张面具、硅胶面具等

呈现方式

距离、角度、移动等

光线条件

正常光、强光、弱光、逆光等

裁剪方式

面具是否扣除眼部、鼻子、嘴巴等

三维头模攻击

头模材质

泡沫、树脂、全彩砂岩、石英砂等

呈现方式

距离、角度、移动等

光线条件

正常光、强光、弱光、逆光等

6. 特征提取

        特征提取是将一张人脸图像转化为一串固定长度的数值的过程。这个数值串被称为人脸特征,具有表征这个人脸特点的能力。

        特征提取过程的输入是 “一张人脸图”和“人脸五官关键点坐标”,输出是人脸相应的一个数值串(特征)。特征提取算法都会根据人脸五官关键点坐标将人脸对齐预定模式,然后计算特征。

        目前主流的特征提取方法是基于深度学习,利用深度网络模型对海量的人脸图片进行学习,然后对输入图像提取出对区分不同人的脸有用的特征向量,代替人工设计的特征。通过特征向量在特征空间里进行比对,同一人的不同照片提取出的特征,在特征空间里距离较近,不同人的脸在特征空间里相距较远。

7. 人脸验证

        人脸验证(Face Verification)是判定两个人脸图像是否为同一人的算法。

        它的输入是两个人脸特征,通过人脸比对获得两个人脸特征的相似度,通过与预设的阈值比较来验证这两个人脸特征是否属于同一人(即相似度大于阈值,为同一人;小于阈值为不同)。

8. 人脸辨识

        人脸辨识(Face Recognition)是识别出输入人脸图像对应身份的算法。

        它的输入一个人脸特征,通过和注册在库中N个身份对应的特征进行逐个比对,找出“一个”与输入特征相似度最高的特征。将这个最高相似度值和预设的阈值相比较,如果大于阈值,则返回该特征对应的身份,否则返回“不在库中”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/317461.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

现代神经网络总结(AlexNet VGG GoogleNet ResNet的区别与改进)

VGG NIN GoogleNet 1.VGG,NIN,GoogleNet的块结构图对比(注意:无AlexNet) 这些块带来的区别与细节 AlexNet未使用块,主要对各个层进行了解: 卷积:捕捉特征 relu:增强非线性 池化层:减少计算量 norm:规范数据分布 全连接层:分类VGG块的改善(对比AlexNe…

理解Linux文件系统

文章目录 一、引言二、Linux文件系统概述1、文件系统的结构2、文件系统目录树的逻辑结构 二、文件系统的特性1、super block:文件系统的超级块2、inode:文件系统的索引节点3、inode table4、block:文件系统的数据块5、块组描述符表&#xff0…

Python 与 TensorFlow2 生成式 AI(二)

原文:zh.annas-archive.org/md5/d06d282ea0d9c23c57f0ce31225acf76 译者:飞龙 协议:CC BY-NC-SA 4.0 第四章:教授网络生成数字 在前一章中,我们涵盖了神经网络模型的构建基块。在这一章中,我们的第一个项目…

CGAL 点云数据生成DSM、DTM、等高线和数据分类

原文链接 CGAL 点云数据生成DSM、DTM、等高线和数据分类 - 知乎 在GIS应用软件中使用的许多传感器(如激光雷达)都会产生密集的点云。这类应用软件通常利用更高级的数据结构:如:不规则三角格网 (TIN)是生成数字高程模型 (DEM) 的基础,也可以利…

【综述】多核处理器芯片

文章目录 前言 Infineon处理器 AURIX™系列 TC399XX-256F300S 典型应用 开发工具 参考资料 前言 见《【综述】DSP处理器芯片》 Infineon处理器 AURIX™系列,基于TriCore内核,用于汽车和工业领域。 XMC™系列,基于ARM Cortex-M内核&…

Power BI:如何将文件夹批量Excel(多sheet页)文件导入?

故事背景: 业务同事想用Power BI分析近两年市场费用。 数据源全部是Excel文件,并且以每月一个Excel文件的方式,统一存放到同一文件夹下面。 重点,每张Excel文件会有多张sheet页,用区分每家分公司的费用信息。 目前…

2023年蓝桥杯C++A组第三题:更小的数(双指针解法)

题目描述 小蓝有一个长度均为 n 且仅由数字字符 0 ∼ 9 组成的字符串,下标从 0 到 n − 1,你可以将其视作是一个具有 n 位的十进制数字 num,小蓝可以从 num 中选出一段连续的子串并将子串进行反转,最多反转一次。小蓝想要将选出的…

使用 Python 和 OpenCV 进行实时目标检测的详解

使用到的模型文件我已经上传了,但是不知道能否通过审核,无法通过审核的话,就只能 靠大家自己发挥实力了,^_^ 目录 简介 代码介绍 代码拆解讲解 1.首先,让我们导入需要用到的库: 2.然后,设…

ansible-playbook离线升级centos内核

目录 概述实践ansible目录结构关键代码执行效果 结束 概述 内核离线包官网下载地址如下: 地址 实践 ansible目录结构 如对 ansible 不熟悉,离线包下载有问题,请至此地址下载,按本文操作可直接使用。 相关文章链接如下 文章地…

水电气能耗管理云平台

安科瑞薛瑶瑶18701709087/17343930412 能耗管理云平台采用泛在物联、云计算、大数据、移动通讯、智能传感器等技术手段可为用户提供能源数据采集、统计分析、能效分析、用能预警、设备管理等服务,平台可以广泛应用于多种领域。

Centos的一些基础命令

CentOS是一个基于开源代码构建的免费Linux发行版,它由Red Hat Enterprise Linux (RHEL) 的源代码重新编译而成。由于 CentOS是基于RHEL构建的,因此它与RHEL具有非常类似的特性和功能,包括稳定性、安全性和可靠性。并且大部分的 Linux 命令在C…

基于H.264的RTP打包中的组合封包以及分片封包结构图简介及抓包分析;FU-A FU-B STAP-A STAP-B简介;

H.264视频流的RTP封装类型分析: 前言: 1.RTP打包原则: RTP的包长度必须要小于MTU(最大传输单元),IP协议中MTU的最大长度为1500字节。除去IP报头(20字节)、UDP报头(8字节)、RTP头&a…

ZISUOJ 高级语言程序设计实训-基础C(部分题)

说明&#xff1a; 有几个题是不会讲的&#xff0c;我只能保证大家拿保底分。 题目列表&#xff1a; 问题 A: 求平均数1 思路&#xff1a; 送分题…… 参考题解&#xff1a; #include <iostream> #include <iomanip> using std::cin; using std::cout;int main(…

Django后台项目开发实战二

我们的需求是开发职位管理系统 三个功能&#xff1a; 管理员发布职位候选人能浏览职位用户能投递职位 第二阶段 创建应用 jobs&#xff0c;实现职位数据的建模 python manage.py startapp jobs 然后再 setting .py 注册应用&#xff0c;只需添加应用名称到最后一行 INST…

git 的迁移

现象是gitlab经常会挂掉&#xff0c;linux会显示磁盘空间不足&#xff0c;实际上&#xff0c;我们linux某个目录的空间是4T。这个空间应该是足够的。猜测是gitlab的安装目录不对导致的空间不足。 1、查找原因 用rpm 安装gitlab会有自己的目录&#xff0c;很多安装文件会在opt…

【华为】华为防火墙双机热备

【华为】华为防火墙双机热备 实验需求实验拓扑配置FW5-M前骤单臂路由和VRRP划分防火墙基本区域部署HRP&#xff08;华为心跳协议&#xff09; FW6-B前骤单臂路由和VRRP划分防火墙基本区域部署HRP&#xff08;华为心跳协议&#xff09; LSW2PC NATSNAT &#xff1a;Easy IPDNAT&…

DSP实时分析平台设计方案:924-6U CPCI振动数据DSP实时分析平台

6U CPCI振动数据DSP实时分析平台 一、产品概述 基于CPCI结构完成40路AD输入&#xff0c;30路DA输出的信号处理平台&#xff0c;处理平台采用双DSPFPGA的结构&#xff0c;DSP采用TI公司新一代DSP TMS320C6678&#xff0c;FPGA采用Xilinx V5 5VLX110T-1FF1136芯片&#xff…

如何在Spring Boot中配置数据库密码加密

如何在Spring Boot中配置数据库密码加密&#xff1f; alibaba/druid Wiki GitHub 使用ConfigFilter alibaba/druid Wiki GitHub 巧用Druid数据源实现数据库连接密码的加密解密功能 import com.alibaba.druid.filter.config.ConfigTools;public class Testttt {public stat…

【IDEA】IDEA自带Maven/JDK,不需要下载

IDEA是由Java编写的&#xff0c;为了保证其运行&#xff0c;内部是自带JDK的。IDEA 2021 及 之后的版本是自带Maven的&#xff1a; 视频连接&#xff1a; https://www.bilibili.com/video/BV1Cs4y1b7JC?p4&spm_id_frompageDriver&vd_source5534adbd427e3b01c725714cd…

状态模式和策略模式对比

状态模式和策略模式都是行为型设计模式&#xff0c;它们的主要目标都是将变化的行为封装起来&#xff0c;使得程序更加灵活和可维护。之所以将状态模式和策略模式进行比较&#xff0c;主要是因为两个设计模式的类图相似度较高。但是&#xff0c;从状态模式和策略模式的应用场景…