AI大模型探索之路-训练篇10:大语言模型Transformer库-Tokenizer组件实践

系列篇章💥

AI大模型探索之路-训练篇1:大语言模型微调基础认知
AI大模型探索之路-训练篇2:大语言模型预训练基础认知
AI大模型探索之路-训练篇3:大语言模型全景解读
AI大模型探索之路-训练篇4:大语言模型训练数据集概览
AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化
AI大模型探索之路-训练篇6:大语言模型预训练数据准备-预处理
AI大模型探索之路-训练篇7:大语言模型Transformer库之HuggingFace介绍
AI大模型探索之路-训练篇8:大语言模型Transformer库-预训练流程编码体验
AI大模型探索之路-训练篇9:大语言模型Transformer库-Pipeline组件实践


目录

  • 系列篇章💥
  • 前言
  • 一、Tokenizer概览
  • 二、Tokenizer的工作原理
  • 三、Tokenizer的使用方法
    • 1、加载与保存
    • 2、句子分词
    • 3、查看词典
    • 4、索引转换
    • 5、填充与截断
    • 6、其他输入部分
    • 7、快速调用方式
  • 四、Fast/Slow Tokenizer
  • 五、自定义Tokenizer
  • 六、Tokenizer与模型训练
  • 总结


前言

在自然语言处理(NLP)的世界里,文本数据的处理和理解是至关重要的一环。为了使得计算机能够理解和处理人类的自然语言,我们需要将原始的、对人类可读的文本转化为机器可以理解的格式。这就是Tokenizer,或者我们常说的分词器,发挥作用的地方。

一、Tokenizer概览

官网API地址:https://huggingface.co/docs/transformers/main_classes/tokenizer
Tokenizer是自然语言处理中的一个核心组件,它的主要功能是将原始文本转换为机器学习模型能够处理的格式。这一过程看似简单,实则包含了许多复杂且精细的步骤。在深度学习中的Transformer架构及其衍生模型中,Tokenizer的工作流程通常包括两个关键步骤:
1)首先,是文本分解。这一步的目的是将原始的、连续的文本分割成更细的粒度单元,这些单元可以是单词级别,也可以是子词级别,甚至是字符级别。这一步骤的目标是将文本分解为可以被模型理解并处理的基本单元。
2)其次,是编码映射。这一步的目标是将这些基本单元转换为模型可以理解的数值形式,最常见的形式是整数序列。这样,我们就可以将这些数值输入到模型中,让模型进行学习和预测。
在接下来的内容中,我们将详细探讨Tokenizer的工作原理,以及如何在实际的自然语言处理任务中使用Tokenizer。

二、Tokenizer的工作原理

Tokenizer的工作原理涉及:
1)文本分解:将文本分解为更小的单元。
2)词汇表:使用词汇表将文本单元映射到数值ID。
3)特殊标记:添加如[CLS]、[SEP]等特殊标记,以适应模型的特定需求。
在序列标注任务中,特殊标记帮助模型识别序列的开始和结束。

# 展示特殊标记的添加
sequence = "Here is an example sequence."
encoded_sequence = tokenizer(sequence, add_special_tokens=True)
print(encoded_sequence)

三、Tokenizer的使用方法

Tokenizer的使用流程一般遵循以下步骤:
1)导入Tokenizer库:从NLP库(例如Hugging Face的transformers)导入Tokenizer类。
2)加载预训练Tokenizer:通过指定模型名称加载预训练的Tokenizer实例。
3)文本转换:将文本数据输入Tokenizer进行编码转换。
4)获取编码输出:Tokenizer输出编码后的数据,通常包括:
-输入ID:转换后的整数序列,用于模型输入。
-注意力掩码(Attention Mask):标识哪些输入ID是有效内容,哪些是填充(padding)。
-类别ID(Token Type IDs):在某些任务中区分句子对的两个不同句子。
代码示例:

下面是一个使用Tokenizer的代码示例:

from transformers import AutoTokenizer# 加载预训练的Tokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")# 待处理的文本
text = "Transformers are the core of modern NLP tasks."# 使用Tokenizer进行编码
encoded_input = tokenizer(text, return_tensors='pt')# 访问编码结果
input_ids = encoded_input['input_ids']
attention_mask = encoded_input['attention_mask']

Tokenizer的基本使用

from transformers import AutoTokenizer
sen = "吃葡萄不吐葡萄皮!"

1、加载与保存

1)加载模型

# 从HuggingFace加载,输入模型名称,即可加载对于的分词器
tokenizer = AutoTokenizer.from_pretrained("uer/roberta-base-finetuned-dianping-chinese")
tokenizer

输出结果:

BertTokenizerFast(name_or_path='uer/roberta-base-finetuned-dianping-chinese', vocab_size=21128, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}, clean_up_tokenization_spaces=True),  added_tokens_decoder={0: AddedToken("[PAD]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),100: AddedToken("[UNK]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),101: AddedToken("[CLS]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),102: AddedToken("[SEP]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),103: AddedToken("[MASK]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}

2)保存模型

# tokenizer 保存到本地
tokenizer.save_pretrained("./roberta_tokenizer")
('./roberta_tokenizer/tokenizer_config.json','./roberta_tokenizer/special_tokens_map.json','./roberta_tokenizer/vocab.txt','./roberta_tokenizer/added_tokens.json','./roberta_tokenizer/tokenizer.json')

会自动在同层级目录roberta_tokenizer中存放下载下来的模型
3)从本地加载模型

# 从本地加载tokenizer
tokenizer = AutoTokenizer.from_pretrained("./roberta_tokenizer/")
tokenizer

输出结果:

BertTokenizerFast(name_or_path='./roberta_tokenizer/', vocab_size=21128, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}, clean_up_tokenization_spaces=True),  added_tokens_decoder={0: AddedToken("[PAD]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),100: AddedToken("[UNK]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),101: AddedToken("[CLS]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),102: AddedToken("[SEP]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),103: AddedToken("[MASK]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}

2、句子分词

tokens = tokenizer.tokenize(sen)
tokens

输出:

['吃', '葡', '萄', '不', '吐', '葡', '萄', '皮', '!']

3、查看词典

tokenizer.vocab

输出如下
在这里插入图片描述

查看词典大小

tokenizer.vocab_size

21128

4、索引转换

1)将词序列转换为id序列

ids = tokenizer.convert_tokens_to_ids(tokens)
ids

输出:

[1391, 5868, 5843, 679, 1402, 5868, 5843, 4649, 106]

2)将id序列转换为token序列

tokens = tokenizer.convert_ids_to_tokens(ids)
tokens

输出:

['吃', '葡', '萄', '不', '吐', '葡', '萄', '皮', '!']

3)将token序列转换为string

str_sen = tokenizer.convert_tokens_to_string(tokens)
str_sen

输出:

'吃 葡 萄 不 吐 葡 萄 皮!'

4)更便捷的实现方式
将字符串转换为id序列,又称之为编码

ids = tokenizer.encode(sen, add_special_tokens=True)
ids

输出:

[101, 1391, 5868, 5843, 679, 1402, 5868, 5843, 4649, 106, 102]

将id序列转换为字符串,又称之为解码

str_sen = tokenizer.decode(ids, skip_special_tokens=False)
str_sen

输出:

'[CLS] 吃 葡 萄 不 吐 葡 萄 皮! [SEP]'

5、填充与截断

1)填充

ids = tokenizer.encode(sen, padding="max_length", max_length=15)
ids

输出:

[101, 1391, 5868, 5843, 679, 1402, 5868, 5843, 4649, 106, 102, 0, 0, 0, 0]

2)截断

ids = tokenizer.encode(sen, max_length=5, truncation=True)
ids

输出:

[101, 1391, 5868, 5843, 102]

6、其他输入部分

ids = tokenizer.encode(sen, padding="max_length", max_length=15)
ids

输出:

[101, 1391, 5868, 5843, 679, 1402, 5868, 5843, 4649, 106, 102, 0, 0, 0, 0]

查看其他部分内容

attention_mask = [1 if idx != 0 else 0 for idx in ids]
token_type_ids = [0] * len(ids)
ids, attention_mask, token_type_ids

输出:

([101, 1391, 5868, 5843, 679, 1402, 5868, 5843, 4649, 106, 102, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

7、快速调用方式

1)简化调用
简化调用:这是Tokenizer对象的直接调用,它通常是一个简化的方法,提供了基本的编码功能。
参数限制:此方法的参数选项可能较少,只包括一些常用的参数,如padding和max_length。
适用场景:适用于大多数标准情况,当需要执行常规的编码任务时,可以使用此方法。

inputs = tokenizer.encode_plus(sen, padding="max_length", max_length=15)
inputs

输出:

{'input_ids': [101, 1391, 5868, 5843, 679, 1402, 5868, 5843, 4649, 106, 102, 0, 0, 0, 0], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]}

2)增强调用
增强功能:encode_plus方法提供了更多的功能和更细粒度的控制,包括对分词、编码、填充、截断等过程的额外配置。
返回值:encode_plus方法通常返回一个字典,包含了一系列的输出,如输入ID、注意力掩码、标记类型ID等,这些输出可以直接用于模型的输入。
参数丰富:此方法允许用户指定更多的参数,如return_tensors(指定返回张量类型)、return_token_type_ids(返回标记类型ID)、return_attention_mask(返回注意力掩码)等。
适用场景:当你需要更细致地控制文本编码过程,或者需要额外的信息(如注意力掩码或标记类型ID)时,使用encode_plus方法。

inputs = tokenizer(sen, padding="max_length", max_length=15)
inputs

输出:

{'input_ids': [101, 1391, 5868, 5843, 679, 1402, 5868, 5843, 4649, 106, 102, 0, 0, 0, 0], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]}

8、处理batch数据

sens = ["吃葡萄不吐葡萄皮","不吃葡萄到吐葡萄皮","顺势而为"]
res = tokenizer(sens)
res

输出:

{'input_ids': [[101, 1391, 5868, 5843, 679, 1402, 5868, 5843, 4649, 102], [101, 679, 1391, 5868, 5843, 1168, 1402, 5868, 5843, 4649, 102], [101, 7556, 1232, 5445, 711, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]]}

批处理可以很大层度提升我们的处理性能

%%time
# 单条循环处理
for i in range(1000):tokenizer(sen)

CPU times: user 45.3 ms, sys: 0 ns, total: 45.3 ms
Wall time: 44.6 ms

%%time
# 处理batch数据
res = tokenizer([sen] * 1000)

CPU times: user 27.7 ms, sys: 15.6 ms, total: 43.2 ms
Wall time: 7.68 ms

四、Fast/Slow Tokenizer

在Hugging Face的transformers库中,Tokenizer分为两种类型:Fast Tokenizer和Slow Tokenizer。
1)Slow Tokenizer:通常是用Python编写的,速度较慢,但在所有环境中都能保证一致性和可移植性。
2)Fast Tokenizer:使用Rust编写,并通过PyTorch的C++扩展或Python的C扩展提供,速度非常快,尤其是在处理大量数据时。Fast Tokenizers提供了与Slow Tokenizers相同的功能,但速度更快。

选择使用哪种Tokenizer取决于具体的需求。如果对性能要求极高,或者需要处理大量数据,推荐使用Fast Tokenizer。如果需要确保代码的可移植性,或者在性能要求不是非常关键的场景下,可以使用Slow Tokenizer。

在transformers库中,AutoTokenizer类会自动选择Fast Tokenizer(如果可用),以提供最佳性能。如果需要显式选择Tokenizer类型,可以使用模型的特定Tokenizer类,如BertTokenizer或RobertaTokenizer。
fast_tokenizer 使用查看

sen = "吃葡萄不吐葡萄皮!"
fast_tokenizer = AutoTokenizer.from_pretrained("uer/roberta-base-finetuned-dianping-chinese")
fast_tokenizer

输出结果:

BertTokenizerFast(name_or_path='uer/roberta-base-finetuned-dianping-chinese', vocab_size=21128, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}, clean_up_tokenization_spaces=True),  added_tokens_decoder={0: AddedToken("[PAD]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),100: AddedToken("[UNK]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),101: AddedToken("[CLS]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),102: AddedToken("[SEP]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),103: AddedToken("[MASK]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}

slow_tokenizer 使用查看

slow_tokenizer = AutoTokenizer.from_pretrained("uer/roberta-base-finetuned-dianping-chinese", use_fast=False)
slow_tokenizer
BertTokenizer(name_or_path='uer/roberta-base-finetuned-dianping-chinese', vocab_size=21128, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}, clean_up_tokenization_spaces=True),  added_tokens_decoder={0: AddedToken("[PAD]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),100: AddedToken("[UNK]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),101: AddedToken("[CLS]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),102: AddedToken("[SEP]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),103: AddedToken("[MASK]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}

fast_tokenizer 批量执行耗时

%%time
# 处理batch数据
res = fast_tokenizer([sen] * 10000)

CPU times: user 323 ms, sys: 146 ms, total: 468 ms
Wall time: 172 ms

slow_tokenizer 批量执行耗时

%%time
# 处理batch数据
res = slow_tokenizer([sen] * 10000)

CPU times: user 1.1 s, sys: 15.8 ms, total: 1.12 s
Wall time: 1.12 s

五、自定义Tokenizer

用户可以根据特定需求定制Tokenizer:
1)自定义词汇表:创建特定领域的词汇表。
2)自定义规则:添加自定义分词规则以适应特定场景。

实践案例:在医疗领域的文本处理中,自定义Tokenizer能够识别专业术语。
工具和资源:Hugging Face的transformers库允许用户通过继承和修改现有Tokenizer类来创建自定义Tokenizer。

代码样例:

from transformers import BertTokenizerFastclass CustomBertTokenizer(BertTokenizerFast):def __init__(self, vocab_file, **kwargs):super().__init__(vocab_file=vocab_file, **kwargs)# 自定义逻辑...# 假设已有自定义词汇表
custom_tokenizer = CustomBertTokenizer(vocab_file="path_to_vocab.txt")
encoded_custom = custom_tokenizer("Customizing Tokenizer is flexible.", return_tensors="pt")
print(encoded_custom)

六、Tokenizer与模型训练

Tokenizer在模型训练中的作用包括:
1)数据预处理:将训练数据转换为模型可处理的格式。
2)与模型整合:确保Tokenizer与模型的输入层完全兼容。

实践案例:在训练一个自定义文本分类模型时,需要确保Tokenizer的输出与模型的输入层匹配。
工具和资源:使用PyTorch或TensorFlow框架,可以方便地将Tokenizer集成到模型训练流程中。

代码样例:

# 导入必要的类:从transformers库中导入BertForSequenceClassification(用于序列分类的BERT模型),Trainer(训练器类),和TrainingArguments(训练参数类)
from transformers import BertForSequenceClassification, Trainer, TrainingArguments#初始化模型:使用BertForSequenceClassification类创建一个序列分类模型实例。这个模型是基于BERT的,并且是预训练好的,我们通过from_pretrained方法加载它。num_labels参数指定了分类任务的标签数量。
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)# 准备数据集
# ...
#定义训练参数:TrainingArguments类用于定义训练过程中的各种参数,如输出目录output_dir,训练轮数num_train_epochs,每个设备的训练批次大小per_device_train_batch_size,预热步数warmup_steps,权重衰减weight_decay,以及日志目录logging_dir。
training_args = TrainingArguments(output_dir="./results",num_train_epochs=3,per_device_train_batch_size=16,warmup_steps=500,weight_decay=0.01,logging_dir="./logs",
)
# 初始化Trainer:Trainer类负责执行模型的实际训练。我们传入模型实例、训练参数和Tokenizer。train_dataset是一个包含训练数据的PyTorch数据集对象,这里省略了其定义和准备过程。
trainer = Trainer(model=model,args=training_args,train_dataset=train_dataset,tokenizer=tokenizer
)
#执行训练:调用trainer.train()方法开始训练
trainer.train()

总结

Tokenizer是Transformer模型不可或缺的一部分,它直接影响模型输入的质量和模型的性能。正确选择和使用Tokenizer对于实现高效的NLP任务至关重要。通过上述实践,我们可以看到Tokenizer不仅需要适应特定的模型架构,还要满足特定任务的需求,并考虑到性能优化和可定制性。

在这里插入图片描述

🎯🔖更多专栏系列文章:AIGC-AI大模型探索之路

如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/317978.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android 设置头像 - 裁剪及圆形头像

书接上文 Android 设置头像 - 相册拍照,通过相册和照片的设置就可以获取到需要的头像信息,但是在通常情况下,我们还想要实现针对头像的裁剪功能和圆形头像功能。 先上截图: 图像裁剪 通常裁剪可以分为程序自动裁剪和用户选择裁剪…

LT6911GX HDMI2.1 至四端口 MIPI/LVDS,带音频 龙迅方案

1. 描述LT6911GX 是一款面向 VR / 显示应用的高性能 HDMI2.1 至 MIPI 或 LVDS 芯片。HDCP RX作为HDCP中继器的上游,可以与其他芯片的HDCP TX配合使用,实现中继器功能。对于 HDMI2.1 输入,LT6911GX 可配置为 3/4 通道。自适应均衡功能使其适合…

Redis运维篇-快速面试笔记(速成版)

文章目录 1. Redis的持久化1.1 RDB(快照模式)1.2 AOF 模式 2. Redis主从模型(高可用)2.1 Redis的主从复制2.2 Redis拓扑结构 3. Redis集群模式(高并发)3.1 Redis的Slots3.2 集群模式的常用命令3.3 多主多从…

全景剖析阿里云容器网络数据链路(七):Terway DataPath V2(Terway≥1.8.0)

作者:余凯 前言 近几年,企业基础设施云原生化的趋势越来越强烈,从最开始的IaaS化到现在的微服务化,客户的颗粒度精细化和可观测性的需求更加强烈。容器网络为了满足客户更高性能和更高的密度,也一直在高速的发展和演…

2024年五一数学建模C题完整解题思路代码

2024年第二十一届五一数学建模竞赛题目 C题 煤矿深部开采冲击地压危险预测 煤炭是中国的主要能源和重要的工业原料。然而,随着开采深度的增加,地应力增大,井下煤岩动力灾害风险越来越大,严重影响着煤矿的安全高效开采。在各类深…

MySQL之多表查询

1. 前言 多表查询,也称为关联查询.指两个或两个以上的表一起完成查询操作.前提条件 : 这些一起查询的表之间是有关系的(一对一/一对多).他们之间一定是有关联字段,这个关联字段可能建立了外键,也可能没有建立外键. 2. 笛卡尔积现象(交叉连接…

【Vulhub靶场】Nginx 漏洞复现

Nginx 漏洞复现 一、Nginx 文件名逻辑漏洞(CVE-2013-4547)1、影响版本2、漏洞原理3、漏洞复现 二、Nginx 解析漏洞1、版本信息:2、漏洞详情3、漏洞复现 一、Nginx 文件名逻辑漏洞(CVE-2013-4547) 1、影响版本 Nginx …

【数据结构】:链表的带环问题

🎁个人主页:我们的五年 🔍系列专栏:数据结构 🌷追光的人,终会万丈光芒 前言: 链表的带环问题在链表中是一类比较难的问题,它对我们的思维有一个比较高的要求,但是这一类…

【数据结构】链表专题3

前言 本篇博客我们继续来讨论链表专题,今天的链表算法题是经典中的经典 💓 个人主页:小张同学zkf ⏩ 文章专栏:数据结构 若有问题 评论区见📝 🎉欢迎大家点赞👍收藏⭐文章 目录 1.判断链表是否…

【Scala---01】Scala『 Scala简介 | 函数式编程简介 | Scala VS Java | 安装与部署』

文章目录 1. Scala简介2. 函数式编程简介3. Scala VS Java4. 安装与部署 1. Scala简介 Scala是由于Spark的流行而兴起的。Scala是高级语言,Scala底层使用的是Java,可以看做是对Java的进一步封装,更加简洁,代码量是Java的一半。 因…

操作系统安全:Linux安全审计,Linux日志详解

「作者简介」:2022年北京冬奥会网络安全中国代表队,CSDN Top100,就职奇安信多年,以实战工作为基础对安全知识体系进行总结与归纳,著作适用于快速入门的 《网络安全自学教程》,内容涵盖系统安全、信息收集等12个知识域的一百多个知识点,持续更新。 这一章节需要直到Linux…

09_Scala函数和对象

文章目录 函数和对象1.函数也是对象 scala中声明了一个函数 等价于声明一个函数对象2.将函数当作对象来用,也就是访问函数,但是不执行函数结果3.对象拥有数据类型(函数类型),对象可以进行赋值操作4.函数对象类型的省略写法,也就是…

Java创建并遍历N叉树(前序遍历)

力扣 title589:N叉树的前序遍历 给定一个 n 叉树的根节点 root ,返回 其节点值的 前序遍历 。 n 叉树 在输入中按层序遍历进行序列化表示,每组子节点由空值 null 分隔(请参见示例)。 思路: 1.初始化时…

CSS-复合选择器

作用&#xff1a; 后代选择器&#xff1a; 子代选择器 并集选择器 用逗号隔开&#xff0c;在style里面写的时候&#xff0c;每一个标签空一行。 <title>Document</title><style>p,div,span{color: aqua;}</style> </head> <body><p>…

细说SVPWM原理及软件实现原理,关联PWM实现

细说SVPWM原理及软件实现原理&#xff0c;关联PWM实现 文章目录 细说SVPWM原理及软件实现原理&#xff0c;关联PWM实现1. 前言2. 基础控制原理回顾2.1 FOC 原理回顾2.2 细说 SVPWM2.2.1 矢量扇区计算2.2.2 矢量作用时间计算 2.2.3 如何理解 U4 U6 2/3Udc?2.2.4 如何理解 U4m…

工业异常检测

工业异常检测在业界和学界都一直是热门&#xff0c;近期其更是迎来了全新突破&#xff1a;与大模型相结合&#xff01;让异常检测变得更快更准更简单&#xff01; 比如模型AnomalyGPT&#xff0c;它克服了以往的局限&#xff0c;能够让大模型充分理解工业场景图像&#xff0c;判…

Java中使用Redis实现分布式锁的三种方式

1. 导语 随着软件开发领域的不断演进,并发性已经成为一个至关重要的方面,特别是在资源跨多个进程共享的分布式系统中。 在Java中,管理并发性对于确保数据一致性和防止竞态条件至关重要。 Redis作为一个强大的内存数据存储,为在Java应用程序中实现分布式锁提供了一种高效的…

第11章 数据库技术(第一部分)

一、数据库技术术语 &#xff08;一&#xff09;术语 1、数据 数据描述事物的符号描述一个对象所用的标识&#xff0c;可以文字、图形、图像、语言等等 2、信息 现实世界对事物状态变化的反馈。可感知、可存储、可加工、可再生。数据是信息的表现形式和载体&#xff0c;信…

Mac brew安装Redis之后更新配置文件的方法

安装命令 brew install redis 查看安装位置命令 brew list redis #查看redis安装的位置 % brew list redis /usr/local/Cellar/redis/6.2.5/.bottle/etc/ (2 files) /usr/local/Cellar/redis/6.2.5/bin/redis-benchmark /usr/local/Cellar/redis/6.2.5/bin/redis-check-ao…

【PyTorch 实战3:YOLOv5检测模型】10min揭秘 YOLOv5 检测网络架构、工作原理以及pytorch代码实现(附代码实现!)

YOLOv5简介 YOLOv5&#xff08;You Only Look Once, Version 5&#xff09;是一种先进的目标检测模型&#xff0c;是YOLO系列的最新版本&#xff0c;由Ultralytics公司开发。该模型利用深度学习技术&#xff0c;能够在图像或视频中实时准确地检测出多个对象的位置及其类别&…