软件IIC和硬件IIC的主要区别,用标准库举例!

学习交流792125321,欢迎一起加入讨论!

在学习iic的时候,我们经常会遇到软件 I²C和硬件 I²C,它两到底有什么区别呢?

软件 I²C(模拟 I²C)和硬件 I²C(外设 I²C)是两种实现 I²C 总线通信的方式,核心区别在于 ​是否依赖微控制器(MCU)内置的硬件 I²C 外设。以下是详细对比及标准库(以 STM32 标准外设库为例)的实现差异:

1. 核心区别

特性软件 I²C硬件 I²C
实现方式通过 GPIO 引脚模拟 I²C 时序(软件控制)使用 MCU 内置的硬件 I²C 外设(硬件控制)
CPU 占用高(需 CPU 持续操作 GPIO)低(硬件自动完成时序,CPU 可处理其他任务)
时序精度依赖软件延时,精度较低由硬件时钟控制,精度高且稳定
开发复杂度简单(无需配置复杂寄存器)复杂(需初始化外设、处理中断/DMA)
灵活性高(可适配任意 GPIO 引脚)低(必须使用硬件 I²C 外设的固定引脚)
速度较慢(受限于软件延时)较快(支持标准模式 100kHz、快速模式 400kHz+)
兼容性通用性强(可适配不同 MCU)依赖具体 MCU 的硬件支持

2. 标准库实现对比(以 STM32F1 标准外设库为例)​

​(1) 硬件 I²C 实现

硬件 I²C 使用 STM32 内置的 I²C 外设,需配置时钟、引脚复用、中断/DMA 等。

代码示例:初始化硬件 I²C1(标准模式,100kHz)​

#include "stm32f10x_i2c.h"void I2C_Hardware_Init(void) {GPIO_InitTypeDef GPIO_InitStruct;I2C_InitTypeDef I2C_InitStruct;// 使能时钟(I2C1 和 GPIOB)RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);// 配置 GPIOB6 (SCL) 和 GPIOB7 (SDA) 为复用开漏模式GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_OD; // 复用开漏GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStruct);// 配置 I2C1I2C_InitStruct.I2C_Mode = I2C_Mode_I2C;I2C_InitStruct.I2C_DutyCycle = I2C_DutyCycle_2; // 占空比 16:9I2C_InitStruct.I2C_OwnAddress1 = 0xA0;          // 主机地址(可忽略)I2C_InitStruct.I2C_Ack = I2C_Ack_Enable;        // 启用应答I2C_InitStruct.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;I2C_InitStruct.I2C_ClockSpeed = 100000;         // 100kHzI2C_Init(I2C1, &I2C_InitStruct);// 启用 I2C1I2C_Cmd(I2C1, ENABLE);
}// 发送数据函数(需处理状态标志和中断)
void I2C_WriteByte(uint8_t devAddr, uint8_t regAddr, uint8_t data) {I2C_GenerateSTART(I2C1, ENABLE);while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));I2C_Send7bitAddress(I2C1, devAddr, I2C_Direction_Transmitter);while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));I2C_SendData(I2C1, regAddr);while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));I2C_SendData(I2C1, data);while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));I2C_GenerateSTOP(I2C1, ENABLE);
}
​(2) 软件 I²C 实现

通过 GPIO 手动控制 SCL 和 SDA 引脚电平,模拟 I²C 时序。

代码示例:模拟 I²C 时序(使用 GPIOB8 和 GPIOB9)​

#include "stm32f10x_gpio.h"// 定义 SCL 和 SDA 引脚
#define SOFT_I2C_SCL_PIN    GPIO_Pin_8
#define SOFT_I2C_SDA_PIN    GPIO_Pin_9
#define SOFT_I2C_PORT       GPIOB// 初始化 GPIO
void Soft_I2C_Init(void) {GPIO_InitTypeDef GPIO_InitStruct;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);// 配置 SCL 和 SDA 为开漏输出模式GPIO_InitStruct.GPIO_Pin = SOFT_I2C_SCL_PIN | SOFT_I2C_SDA_PIN;GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_OD; // 开漏输出GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(SOFT_I2C_PORT, &GPIO_InitStruct);// 初始拉高 SCL 和 SDAGPIO_SetBits(SOFT_I2C_PORT, SOFT_I2C_SCL_PIN);GPIO_SetBits(SOFT_I2C_PORT, SOFT_I2C_SDA_PIN);
}// 微秒级延时函数(需根据实际时钟调整)
void Delay_us(uint32_t us) {us *= 72; // 假设主频为 72MHzwhile (us--) __NOP();
}// 发送起始信号
void Soft_I2C_Start(void) {GPIO_ResetBits(SOFT_I2C_PORT, SOFT_I2C_SDA_PIN);Delay_us(5);GPIO_ResetBits(SOFT_I2C_PORT, SOFT_I2C_SCL_PIN);
}// 发送停止信号
void Soft_I2C_Stop(void) {GPIO_ResetBits(SOFT_I2C_PORT, SOFT_I2C_SDA_PIN);Delay_us(5);GPIO_SetBits(SOFT_I2C_PORT, SOFT_I2C_SCL_PIN);Delay_us(5);GPIO_SetBits(SOFT_I2C_PORT, SOFT_I2C_SDA_PIN);
}// 发送一个字节
void Soft_I2C_WriteByte(uint8_t data) {for (int i = 0; i < 8; i++) {if (data & 0x80) {GPIO_SetBits(SOFT_I2C_PORT, SOFT_I2C_SDA_PIN);} else {GPIO_ResetBits(SOFT_I2C_PORT, SOFT_I2C_SDA_PIN);}Delay_us(2);GPIO_SetBits(SOFT_I2C_PORT, SOFT_I2C_SCL_PIN);Delay_us(5);GPIO_ResetBits(SOFT_I2C_PORT, SOFT_I2C_SCL_PIN);data <<= 1;}// 等待从机应答(省略应答检查)GPIO_SetBits(SOFT_I2C_PORT, SOFT_I2C_SDA_PIN);Delay_us(2);GPIO_SetBits(SOFT_I2C_PORT, SOFT_I2C_SCL_PIN);Delay_us(5);GPIO_ResetBits(SOFT_I2C_PORT, SOFT_I2C_SCL_PIN);
}

3. 适用场景

场景推荐方式原因
高速通信(>100kHz)硬件 I²C依赖硬件时序精度,避免软件延时误差
多任务系统硬件 I²C减少 CPU 占用,支持 DMA/中断
引脚资源紧张硬件 I²C必须使用固定引脚,避免浪费 GPIO
适配非标准 I²C 设备软件 I²C可灵活调整时序(如长延时、非标准协议)
硬件 I²C 外设不可用软件 I²C解决硬件资源冲突或兼容性问题

4. 常见问题

  • 硬件 I²C 初始化失败
    检查时钟配置、引脚复用、上拉电阻(硬件 I²C 需要外部上拉,通常 4.7kΩ)。

  • 软件 I²C 通信不稳定
    调整延时函数精度,确保 SCL/SDA 边沿时间符合设备要求。

  • 速度瓶颈
    软件 I²C 通常无法超过 100kHz,硬件 I²C 可支持 400kHz(Fast Mode)或更高。


总结

  • 硬件 I²C:适合高速、高稳定性场景,但开发复杂且依赖固定引脚。
  • 软件 I²C:灵活简单,但占用 CPU 资源且速度受限。
    根据项目需求选择合适方案:优先使用硬件 I²C 提升性能,若硬件资源不足或需要特殊时序,则用软件模拟。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/31828.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS-三大特性,盒子模型,圆角边框,盒子阴影,文字阴影

一、 CSS 的三大特性 CSS 有三个非常重要的三个特性:层叠性&#xff64;继承性&#xff64;优先级&#xff61; 1.层叠性 相同选择器给设置相同的样式,此时一个样式就会覆盖(层叠)另一个冲突的样式&#xff61;层叠性主要解决样式冲突 的问题 层叠性原则: 样式冲突,遵循的原…

基于 Qwen2.5-14B + Elasticsearch RAG 的大数据知识库智能问答系统

AI 时代&#xff0c;如何从海量私有文档&#xff08;非公开&#xff09;中快速提取精准信息成为了许多企业和个人的迫切需求。 本文介绍了一款基于 Qwen2.5-14B 大语言模型&#xff08;换成 DeepSeek 原理一致&#xff09;与 Elasticsearch 搜索引擎构建的大数据知识库智能问答…

算法手记1

&#x1f984;个人主页:修修修也 &#x1f38f;所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 目录 一.NC313 两个数组的交集 题目详情: 题目思路: 解题代码: 二.AB5 点击消除 题目详情: 题目思路: 解题代码: 结语 一.NC313 两个数组的交集 牛客网题目链接(点击即可跳转)…

JMeter使用BeanShell断言

BeanShell简介 BeanShell是使用Java语法的一套脚本语言&#xff0c;在JMeter的多种组件中都有BeanShell的身影&#xff0c;如&#xff1a; 定时器&#xff1a;BeanShell Timer前置处理器&#xff1a;BeanShell PreProcessor采样器&#xff1a;BeanShell Sampler后置处理器&am…

【技海登峰】Kafka漫谈系列(五)Java客户端之生产者Producer核心组件与实现原理剖析

【技海登峰】Kafka漫谈系列(五)Java客户端之生产者Producer核心组件与实现原理剖析 向Kafka Broker服务节点中发送主题消息数据的应用程序被称为生产者,生产者与消费者均属于Kafka客户端,几乎所有主流语言都支持调用客户端API。官方提供了基于Java实现的kafka-clients,用于…

【eNSP实战】配置交换机端口安全

拓扑图 目的&#xff1a;让交换机端口与主机mac绑定&#xff0c;防止私接主机。 主机PC配置不展示&#xff0c;按照图中配置即可。 开始配置之前&#xff0c;使用PC1 ping 一遍PC2、PC3、PC4、PC5&#xff0c;让交换机mac地址表刷新一下记录。 LSW1查看mac地址表 LSW1配置端…

AWS Bedrock 正式接入 DeepSeek-R1 模型:安全托管的生成式 AI 解决方案

亚马逊云科技&#xff08;AWS&#xff09;于 2024 年 1 月 30 日 宣布&#xff0c;DeepSeek-R1 模型 正式通过 Amazon Bedrock 平台提供服务&#xff0c;用户可通过 Bedrock Marketplace 或自定义模型导入功能使用该模型。 DeepSeek-R1&#xff0c;其安全防护机制与全面的 AI 部…

数据结构之线性表

目录 1 简介 2 线性表的基本概念 3 顺序存储的线性表 3.1 定义线性表结构 3.2 初始化线性表 3.3 插入元素 3.4 删除元素 3.5 查找元素 3.6 扩容操作 3.7 打印线性表 4 线性表的应用 5 总结 1 简介 线性表是数据结构中最基础且常用的一种结构&#xff0c;它是由一…

c#面试题12

1.ApplicationPool介绍一下 c#里没有 2.XML 可扩展标记语言&#xff0c;一般以.xml文件格式的形式存在。可用于存储结构化的数据 3.ASP.NET的用户控件 将原始的控件&#xff0c;用户根据需要进行整合成一个新的控件 4.介绍一下code-Behind 即代码后置技术&#xff0c;就是…

英语学习(GitHub学到的分享)

【英语语法&#xff1a;https://github.com/hzpt-inet-club/english-note】 【离谱的英语学习指南&#xff1a;https://github.com/byoungd/English-level-up-tips/tree/master】 【很喜欢文中的一句话&#xff1a;如果我轻轻松松的学习&#xff0c;生活的幸福指数会提高很多…

C++蓝桥杯基础篇(十一)

片头 嗨~小伙伴们&#xff0c;大家好&#xff01;今天我们来学习C蓝桥杯基础篇&#xff08;十一&#xff09;&#xff0c;学习类&#xff0c;结构体&#xff0c;指针相关知识&#xff0c;准备好了吗&#xff1f;咱们开始咯~ 一、类与结构体 类的定义&#xff1a;在C中&#x…

一次解决Andriod Studio Build Gradle很慢或报错下载失败等问题

Andriod Studio创建项目时&#xff0c;Build gradle一直在下载或者卡住或者很慢&#xff0c;反正就是会在这里出现各自问题的&#xff0c;请看这里&#xff01; 来来来&#xff0c;全体目光向我看齐&#xff01;&#xff01;&#xff01;保准让你解决掉这个问题&#xff01;这…

接口自动化入门 —— swagger/word/excelpdf等不同种类的接口文档理解!

在接口自动化测试中&#xff0c;接口文档是开发和测试人员理解接口功能、参数和交互方式的重要依据。常见的接口文档类型包括Swagger、Word、Excel和PDF。 1. Swagger文档 Swagger是一种用于描述和定义RESTful API的规范&#xff0c;使用JSON或YAML格式来定义API的输入参数、输…

Docker Compose国内镜像一键部署dify

克隆代码 git clone https://github.com/langgenius/dify.git进入docker目录 cd docker修改.env部分 # 将环境模版文件变量重命名 cp .env.example .env # 修改 .env,修改nginx的host和端口,避免端口冲突 NGINX_SERVER_NAME192.168.1.223 NGINX_PORT1880 NGINX_SSL_PORT1443…

网络安全之文件上传漏洞

一&#xff0c;文件上传漏洞的原因&#xff1a; 文件上传漏洞的存在主要是因为开发者未对用户上传的文件进行充分的安全验证&#xff0c;导致攻击者可以上传恶意文件&#xff08;如 WebShell、恶意脚本等&#xff09;到服务器&#xff0c;进而控制服务器或实施进一步攻击。 常…

QT系列教程(20) Qt 项目视图便捷类

视频连接 https://www.bilibili.com/video/BV1XY41127t3/?vd_source8be9e83424c2ed2c9b2a3ed1d01385e9 Qt项目视图便捷类 Qt项目视图提供了一些便捷类&#xff0c;包括QListWidget, QTableWidget&#xff0c; QTreeWidget等。我们分别介绍这几个便捷类。 我们先创建一个Qt …

Java学习--MySQL

后端开发中&#xff0c;数据常存储在数据库中&#xff1a; 一、数据库基础 数据库&#xff1a;DataBase&#xff08;DB&#xff09;&#xff0c;是存储和管理数据的仓库 1.1连接数据库 mysql -u用户 -p密码 [-h数据库服务器ip地址 -P端口号] 1.2 关系型数据库 关系型数据…

博客系统测试报告

一、项目背景 以SSM为框架实现的博客系统有四个功能&#xff0c;登录账号进入博客首页&#xff0c;首页展示发布的博客列表&#xff0c;还可以编写或者更改博客内容。为了确保博客系统在各种场景下都能正常运行&#xff0c;需要进行尽可能全面的功能测试和自动化测试。本项目旨…

Chebykan wx 文章阅读

文献筛选 [1] 神经网络&#xff1a;全面基础 [2] 通过sigmoid函数的超层叠近似 [3] 多层前馈网络是通用近似器 [5] 注意力是你所需要的 [6] 深度残差学习用于图像识别 [7] 视觉化神经网络的损失景观 [8] 牙齿模具点云补全通过数据增强和混合RL-GAN [9] 强化学习&#xff1a;一…

LabVIEW变频器谐波分析系统

随着工业自动化的发展&#xff0c;变频器在电力、机械等领域的应用日益广泛&#xff0c;但谐波问题直接影响系统效率与稳定性。传统谐波检测设备&#xff08;如Norma5000&#xff09;精度虽高&#xff0c;但价格昂贵且操作复杂&#xff0c;难以适应现场快速检测需求。本项目基于…