分层图像金字塔变压器

文章来源:hierarchical-image-pyramid-transformers

2024 年 2 月 5 日

本文介绍了分层图像金字塔变换器 (HIPT),这是一种新颖的视觉变换器 (ViT) 架构,设计用于分析计算病理学中的十亿像素全幻灯片图像 (WSI)。 HIPT 利用 WSI 固有的层次结构通过自我监督学习来学习高分辨率图像表示。 HIPT 在涵盖 33 种癌症类型的大型数据集上进行预训练,并在多个幻灯片级任务中进行评估,在癌症亚型分型和生存预测方面表现出卓越的性能,展示了自我监督学习模型在捕获肿瘤微环境中关键的归纳偏差和表型方面的潜力。

1

本图展示了计算病理学中使用的全切片图像 (WSI) 的分层结构。左图显示的是多层次方法,在这种方法中,大型组织图像(150,000 x 150,000 像素)被分解成更小、更易于管理的部分:首先是显示组织表型的 4096 x 4096 区域,然后是 256 x 256 细胞组织斑块,最后是最小的 16 x 16 细胞特征。右图展示了 256 x 256 图像是如何由 256 个较小的 16 x 16 标记序列组成的,反过来,每个 256 x 256 图像又是如何成为 4096 x 4096 区域内 256 x 256 标记的更大的不连续序列的一部分。这种分层标记化方法可以处理和分析不同分辨率和比例的超大图像。

该模型由三个阶段的分层聚合组成,首先是自下而上地聚合各自 256x256 和 4096x4096 窗口中的 16x16 视觉标记,最终形成幻灯片级表示。HIPT 模型的主要组成部分可写如下:

1. 分层聚合: HIPT 在细胞、斑块和区域层面聚合视觉标记,形成幻灯片表征。这种分层方法是受自然语言处理中使用分层表示法的启发,在自然语言处理中,嵌入可以在不同层次上聚合,形成文档表示法。同样,在 WSI 的背景下,分层聚合允许模型捕捉不同粒度级别的信息,从单个细胞到更广泛的组织结构。

2. Transformer自注意力: 为了在聚合的每个阶段对视觉概念之间的重要依赖关系进行建模,HIPT 将 Transformer 自注意力调整为包络变换聚合层。这样,该模型就能捕捉视觉标记之间的复杂关系,并学习能编码图像中局部和全局上下文的表征。

3. 预训练和自我监督学习: HIPT 采用自我监督学习的方式对 33 种癌症类型的千兆像素 WSI 大数据集进行预训练。该模型利用两个层次的自我监督学习来学习高分辨率图像表征,并利用学生-教师知识提炼来对每个聚合层进行预训练,对大至 4096x4096 的区域进行自我监督学习。

4. 性能和应用: 研究结果表明,采用分层预训练的 HIPT 在幻灯片级任务上的表现优于目前最先进的方法。该模型的性能在包括癌症亚型和生存预测在内的 9 项幻灯片级任务上进行了评估,并显示其在捕捉组织微环境中更广泛的预后特征方面表现出色。

2

图中从左到右显示了三个聚合级别:

  1. 细胞级聚合: 单个细胞由 16 px tokens表示,然后使用 ViT256-16 模型将其聚合为片段级表示,再进行全局池化以获得单一矢量表示。
  2. 斑块级聚合: 使用专为 256 px 输入设计的更大 ViT 变体来处理 256 px 补丁,然后再次使用池化层将补丁级特征汇总为区域级表示。
  3. 区域级聚合: 最后,对 4096 px 的区域进行聚合,这一次使用的是将整个区域作为输入的 ViT,从而形成一个全局注意力汇集层,提供幻灯片级表示。

这一分层过程将问题分解为易于处理的部分,并关注从细胞到组织结构等不同层次的细节,从而使模型能够处理规模巨大的 WSI。

下面的脚本利用了专门用于高分辨率图像分析的视觉转换器(ViTs),并结合了几种先进的功能和技术:

1. 截断法线初始化: 这是一种用于初始化神经网络权重的技术,可避免与平均值产生较大偏差,从而确保早期训练阶段的稳定性。

2. Drop Path: 一种正则化方法,在训练过程中随机丢弃网络中的路径,通过模拟更薄的网络来提高泛化效果,类似于dropout,但针对的是残余连接。

3. 多层感知器(MLP)模块: 定义一个简单的双层 MLP,具有 GELU 激活函数和滤除功能,用于在转换器模块中处理特征。

4. 注意机制:采用可选偏置和缩放的自注意机制,这对捕捉输入数据中的全局依赖性至关重要。

5. Transformer模块: 将规范层、注意机制和 MLP 组合成一个内聚块,并可选择路径剔除进行正则化。

6. VisionTransformer4K:Vision Transformer 的专用版本,专为超高分辨率图像而设计,采用了位置嵌入插值等技术,以适应不同的图像尺寸,其结构也针对处理大规模图像进行了优化。

7. 实用功能: 包括用于截断法线权重初始化、下落路径模拟和参数计算的函数,以帮助进行模型设置和分析。

import argparse
import os
import sys
import datetime
import time
import math
import json
from pathlib import Path
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torchvision import models as torchvision_models
import vision_transformer as vits
from vision_transformer import DINOHead
import math
from functools import partial
import torch
import torch.nn as nn
def _no_grad_trunc_normal_(tensor, mean, std, a, b):# Cut & paste from PyTorch official master until it's in a few official releases - RW# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdfdef norm_cdf(x):# Computes standard normal cumulative distribution functionreturn (1. + math.erf(x / math.sqrt(2.))) / 2.if (mean < a - 2 * std) or (mean > b + 2 * std):warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ""The distribution of values may be incorrect.",stacklevel=2)with torch.no_grad():# Values are generated by using a truncated uniform distribution and# then using the inverse CDF for the normal distribution.# Get upper and lower cdf valuesl = norm_cdf((a - mean) / std)u = norm_cdf((b - mean) / std)# Uniformly fill tensor with values from [l, u], then translate to# [2l-1, 2u-1].tensor.uniform_(2 * l - 1, 2 * u - 1)# Use inverse cdf transform for normal distribution to get truncated# standard normaltensor.erfinv_()# Transform to proper mean, stdtensor.mul_(std * math.sqrt(2.))tensor.add_(mean)# Clamp to ensure it's in the proper rangetensor.clamp_(min=a, max=b)return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):# type: (Tensor, float, float, float, float) -> Tensorreturn _no_grad_trunc_normal_(tensor, mean, std, a, b)def drop_path(x, drop_prob: float = 0., training: bool = False):if drop_prob == 0. or not training:return xkeep_prob = 1 - drop_probshape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNetsrandom_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_()  # binarizeoutput = x.div(keep_prob) * random_tensorreturn output
class DropPath(nn.Module):"""Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""def __init__(self, drop_prob=None):super(DropPath, self).__init__()self.drop_prob = drop_probdef forward(self, x):return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.act = act_layer()self.fc2 = nn.Linear(hidden_features, out_features)self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return x
class Attention(nn.Module):def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):super().__init__()self.num_heads = num_headshead_dim = dim // num_headsself.scale = qk_scale or head_dim ** -0.5self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)def forward(self, x):B, N, C = x.shapeqkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)q, k, v = qkv[0], qkv[1], qkv[2]attn = (q @ k.transpose(-2, -1)) * self.scaleattn = attn.softmax(dim=-1)attn = self.attn_drop(attn)x = (attn @ v).transpose(1, 2).reshape(B, N, C)x = self.proj(x)x = self.proj_drop(x)return x, attn
class Block(nn.Module):def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()self.norm1 = norm_layer(dim)self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)def forward(self, x, return_attention=False):y, attn = self.attn(self.norm1(x))if return_attention:return attnx = x + self.drop_path(y)x = x + self.drop_path(self.mlp(self.norm2(x)))return x
class VisionTransformer4K(nn.Module):""" Vision Transformer 4K """def __init__(self, num_classes=0, img_size=[224], input_embed_dim=384, output_embed_dim = 192,depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, num_prototypes=64, **kwargs):super().__init__()embed_dim = output_embed_dimself.num_features = self.embed_dim = embed_dimself.phi = nn.Sequential(*[nn.Linear(input_embed_dim, output_embed_dim), nn.GELU(), nn.Dropout(p=drop_rate)])num_patches = int(img_size[0] // 16)**2print("# of Patches:", num_patches)self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))self.pos_drop = nn.Dropout(p=drop_rate)dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay ruleself.blocks = nn.ModuleList([Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)for i in range(depth)])self.norm = norm_layer(embed_dim)# Classifier headself.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()trunc_normal_(self.pos_embed, std=.02)trunc_normal_(self.cls_token, std=.02)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)def interpolate_pos_encoding(self, x, w, h):npatch = x.shape[1] - 1N = self.pos_embed.shape[1] - 1if npatch == N and w == h:return self.pos_embedclass_pos_embed = self.pos_embed[:, 0]patch_pos_embed = self.pos_embed[:, 1:]dim = x.shape[-1]w0 = w // 1h0 = h // 1# we add a small number to avoid floating point error in the interpolation# see discussion at https://github.com/facebookresearch/dino/issues/8w0, h0 = w0 + 0.1, h0 + 0.1patch_pos_embed = nn.functional.interpolate(patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),mode='bicubic',)assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)def prepare_tokens(self, x):#print('preparing tokens (after crop)', x.shape)self.mpp_feature = xB, embed_dim, w, h = x.shapex = x.flatten(2, 3).transpose(1,2)x = self.phi(x)# add the [CLS] token to the embed patch tokenscls_tokens = self.cls_token.expand(B, -1, -1)x = torch.cat((cls_tokens, x), dim=1)# add positional encoding to each tokenx = x + self.interpolate_pos_encoding(x, w, h)return self.pos_drop(x)def forward(self, x):x = self.prepare_tokens(x)for blk in self.blocks:x = blk(x)x = self.norm(x)return x[:, 0]def get_last_selfattention(self, x):x = self.prepare_tokens(x)for i, blk in enumerate(self.blocks):if i < len(self.blocks) - 1:x = blk(x)else:# return attention of the last blockreturn blk(x, return_attention=True)def get_intermediate_layers(self, x, n=1):x = self.prepare_tokens(x)# we return the output tokens from the `n` last blocksoutput = []for i, blk in enumerate(self.blocks):x = blk(x)if len(self.blocks) - i <= n:output.append(self.norm(x))return outputdef vit4k_xs(patch_size=16, **kwargs):model = VisionTransformer4K(patch_size=patch_size, input_embed_dim=384, output_embed_dim=192,depth=6, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)return model
def count_parameters(model):return sum(p.numel() for p in model.parameters() if p.requires_grad)

下面的代码脚本概述了加载和评估用于图像分析的 Vision Transformer (ViT) 模型的实现过程,该模型专为计算病理学中的高分辨率图像而设计。它定义了以下功能

1. 加载预训练的 ViT 模型(`get_vit256` 和 `get_vit4k`),并为不同的架构和设备设置提供选项,在不进行梯度计算的评估模式下对其进行初始化。

2. 为模型评估应用变换 (`eval_transforms`),以特定的平均值和标准偏差对图像进行归一化处理。

3. 将成批的图像张量转换为单个 PIL 图像(`roll_batch2img`)或 numpy 数组(`tensorbatch2im`),便于处理图像数据,以实现可视化或进一步处理。

### Dependencies
# Base Dependencies
import argparse
import colorsys
from io import BytesIO
import os
import random
import requests
import sys
# LinAlg / Stats / Plotting Dependencies
import cv2
import h5py
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
import numpy as np
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw 
from scipy.stats import rankdata
import skimage.io
from skimage.measure import find_contours
from tqdm import tqdm
import webdataset as wds
# Torch Dependencies
import torch
import torch.multiprocessing
import torchvision
from torchvision import transforms
from einops import rearrange, repeat
torch.multiprocessing.set_sharing_strategy('file_system')
# Local Dependencies
import vision_transformer as vits
import vision_transformer4k as vits4k
def get_vit256(pretrained_weights, arch='vit_small', device=torch.device('cuda:0')):r"""Builds ViT-256 Model.Args:- pretrained_weights (str): Path to ViT-256 Model Checkpoint.- arch (str): Which model architecture.- device (torch): Torch device to save model.Returns:- model256 (torch.nn): Initialized model."""checkpoint_key = 'teacher'device = torch.device("cpu")model256 = vits.__dict__[arch](patch_size=16, num_classes=0)for p in model256.parameters():p.requires_grad = Falsemodel256.eval()model256.to(device)if os.path.isfile(pretrained_weights):state_dict = torch.load(pretrained_weights, map_location="cpu")if checkpoint_key is not None and checkpoint_key in state_dict:print(f"Take key {checkpoint_key} in provided checkpoint dict")state_dict = state_dict[checkpoint_key]# remove `module.` prefixstate_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}# remove `backbone.` prefix induced by multicrop wrapperstate_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}msg = model256.load_state_dict(state_dict, strict=False)print('Pretrained weights found at {} and loaded with msg: {}'.format(pretrained_weights, msg))return model256
def get_vit4k(pretrained_weights, arch='vit4k_xs', device=torch.device('cuda:1')):r"""Builds ViT-4K Model.Args:- pretrained_weights (str): Path to ViT-4K Model Checkpoint.- arch (str): Which model architecture.- device (torch): Torch device to save model.Returns:- model256 (torch.nn): Initialized model."""checkpoint_key = 'teacher'device = torch.device("cpu")model4k = vits4k.__dict__[arch](num_classes=0)for p in model4k.parameters():p.requires_grad = Falsemodel4k.eval()model4k.to(device)if os.path.isfile(pretrained_weights):state_dict = torch.load(pretrained_weights, map_location="cpu")if checkpoint_key is not None and checkpoint_key in state_dict:print(f"Take key {checkpoint_key} in provided checkpoint dict")state_dict = state_dict[checkpoint_key]# remove `module.` prefixstate_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}# remove `backbone.` prefix induced by multicrop wrapperstate_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}msg = model4k.load_state_dict(state_dict, strict=False)print('Pretrained weights found at {} and loaded with msg: {}'.format(pretrained_weights, msg))return model4k
def eval_transforms():""""""mean, std = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)eval_t = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean = mean, std = std)])return eval_t
def roll_batch2img(batch: torch.Tensor, w: int, h: int, patch_size=256):"""Rolls an image tensor batch (batch of [256 x 256] images) into a [W x H] Pil.Image object.Args:batch (torch.Tensor): [B x 3 x 256 x 256] image tensor batch.Return:Image.PIL: [W x H X 3] Image."""batch = batch.reshape(w, h, 3, patch_size, patch_size)img = rearrange(batch, 'p1 p2 c w h-> c (p1 w) (p2 h)').unsqueeze(dim=0)return Image.fromarray(tensorbatch2im(img)[0])
def tensorbatch2im(input_image, imtype=np.uint8):r""""Converts a Tensor array into a numpy image array.Args:- input_image (torch.Tensor): (B, C, W, H) Torch Tensor.- imtype (type): the desired type of the converted numpy arrayReturns:- image_numpy (np.array): (B, W, H, C) Numpy Array."""if not isinstance(input_image, np.ndarray):image_numpy = input_image.cpu().float().numpy()  # convert it into a numpy array#if image_numpy.shape[0] == 1:  # grayscale to RGB#    image_numpy = np.tile(image_numpy, (3, 1, 1))image_numpy = (np.transpose(image_numpy, (0, 2, 3, 1)) + 1) / 2.0 * 255.0  # post-processing: tranpose and scalingelse:  # if it is a numpy array, do nothingimage_numpy = input_imagereturn image_numpy.astype(imtype)

该脚本定义了 HIPT_4K 模型,整合了用于处理高分辨率图像的视觉转换器模型。它为 256x256 和 4K 分辨率加载预先训练好的 ViT 模型,并将其分层应用于输入图像。这一过程包括将输入图像裁剪成 256x256 的补丁,使用 ViT_256 从每个补丁中提取特征,然后将这些特征输入 ViT_4K,以获得全局表示。这种分层方法能有效处理非方形的高分辨率图像,优化局部和全局尺度的详细特征提取,与本文利用分层结构进行图像分析的方法相一致。

import torch
from einops import rearrange, repeat
from HIPT_4K.hipt_model_utils import get_vit256, get_vit4k
class HIPT_4K(torch.nn.Module):"""HIPT Model (ViT_4K-256) for encoding non-square images (with [256 x 256] patch tokens), with [256 x 256] patch tokens encoded via ViT_256-16 using [16 x 16] patch tokens."""def __init__(self, model256_path: str = 'path/to/Checkpoints/vit256_small_dino.pth',model4k_path: str = 'path/to/Checkpoints/vit4k_xs_dino.pth', device256=torch.device('cuda:0'), device4k=torch.device('cuda:1')):super().__init__()self.model256 = get_vit256(pretrained_weights=model256_path).to(device256)self.model4k = get_vit4k(pretrained_weights=model4k_path).to(device4k)self.device256 = device256self.device4k = device4kself.patch_filter_params = patch_filter_paramsdef forward(self, x):"""Forward pass of HIPT (given an image tensor x), outputting the [CLS] token from ViT_4K.1. x is center-cropped such that the W / H is divisible by the patch token size in ViT_4K (e.g. - 256 x 256).2. x then gets unfolded into a "batch" of [256 x 256] images.3. A pretrained ViT_256-16 model extracts the CLS token from each [256 x 256] image in the batch.4. These batch-of-features are then reshaped into a 2D feature grid (of width "w_256" and height "h_256".)5. This feature grid is then used as the input to ViT_4K-256, outputting [CLS]_4K.Args:- x (torch.Tensor): [1 x C x W' x H'] image tensor.Return:- features_cls4k (torch.Tensor): [1 x 192] cls token (d_4k = 192 by default)."""batch_256, w_256, h_256 = self.prepare_img_tensor(x)                    # 1. [1 x 3 x W x H].batch_256 = batch_256.unfold(2, 256, 256).unfold(3, 256, 256)           # 2. [1 x 3 x w_256 x h_256 x 256 x 256] batch_256 = rearrange(batch_256, 'b c p1 p2 w h -> (b p1 p2) c w h')    # 2. [B x 3 x 256 x 256], where B = (1*w_256*h_256)features_cls256 = []for mini_bs in range(0, batch_256.shape[0], 256):                       # 3. B may be too large for ViT_256. We further take minibatches of 256.minibatch_256 = batch_256[mini_bs:mini_bs+256].to(self.device256, non_blocking=True)features_cls256.append(self.model256(minibatch_256).detach().cpu()) # 3. Extracting ViT_256 features from [256 x 3 x 256 x 256] image batches.features_cls256 = torch.vstack(features_cls256)                         # 3. [B x 384], where 384 == dim of ViT-256 [ClS] token.features_cls256 = features_cls256.reshape(w_256, h_256, 384).transpose(0,1).transpose(0,2).unsqueeze(dim=0) features_cls256 = features_cls256.to(self.device4k, non_blocking=True)  # 4. [1 x 384 x w_256 x h_256]features_cls4k = self.model4k.forward(features_cls256)                  # 5. [1 x 192], where 192 == dim of ViT_4K [ClS] token.return features_cls4k

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/319215.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JDK14特性

JDK14 1 概述2 语法层面的变化1_instanceof的模式匹配(预览)2_switch表达式(标准)3_文本块改进(第二次预览)4_Records 记录类型(预览 JEP359) 3 API层面的变化4 关于GC1_G1的NUMA内存分配优化2_弃用SerialCMS,ParNewSerial Old3_删除CMS4_ZGC on macOS and Windows 4 其他变化1…

正点原子[第二期]Linux之ARM(MX6U)裸机篇学习笔记-8.2-链接脚本

前言&#xff1a; 本文是根据哔哩哔哩网站上“正点原子[第二期]Linux之ARM&#xff08;MX6U&#xff09;裸机篇”视频的学习笔记&#xff0c;在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。…

3.9设计模式——Strategy 策略模式(行为型)

意图 定义一系列的算法&#xff0c;把它们一个个封装起来&#xff0c;并且使他们可以相互替换此模式使得算法可以独立于使用它们的客户而变化 结构 Strategy&#xff08;策略&#xff09;定义所有支持的算法的公共入口。Context使用这个接口来调用某ConcreteStrategy定义的方…

实验14 MVC

二、实验项目内容&#xff08;实验题目&#xff09; 编写代码&#xff0c;掌握MVC的用法。【参考课本 例1 】 三、源代码以及执行结果截图&#xff1a; example7_1.jsp&#xff1a; <% page contentType"text/html" %> <% page pageEncoding "ut…

【信息收集-基于字典爆破敏感目录--御剑/dirsearch

两个工具都是内置字典来对于目录进行爆破的&#xff0c;这是信息收集的一部分&#xff0c;若能在列举出的目录中找到有价值的信息能为后续渗透做准备。 御剑比较简便 dirsearch需要集成python3.x环境&#xff0c;但是可选的命令更多。两者爆破的结果不一定相同&#xff0c;可以…

怎样建设网站

建设一个网站需要经过一系列的步骤和技术&#xff0c;以下是一个简单的指导&#xff1a; 1. 确定网站目的&#xff1a;首先要确定网站的目的和目标。是为了促销产品&#xff1f;提供信息&#xff1f;还是为了社交交流&#xff1f;确定网站目的可以帮助你更好地规划网站的结构和…

【深度学习】位置编码

一、引言 Self-Attention并行的计算方式未考虑输入特征间的位置关系&#xff0c;这对NLP来说是不可接受的&#xff0c;毕竟一个句子中每个单词都有着明显的顺序关系。Transformer没有RNN、LSTM那样的顺序结构&#xff0c;所以Transformer在提出Self-Attention的同时提出了Posi…

RKNN Toolkit2 工具的使用

RKNN Toolkit2 是由瑞芯微电子 (Rockchip) 开发的一套用于深度学习模型优化和推理的工具。它主要面向在瑞芯微SoC上进行AI应用开发&#xff0c;但也可以用于PC平台进行模型的转换、量化、推理等操作。它支持将多种深度学习框架的模型&#xff08;如Caffe, TensorFlow, PyTorch等…

Linux下软硬链接和动静态库制作详解

目录 前言 软硬链接 概念 软链接的创建 硬链接的创建 软硬链接的本质区别 理解软链接 理解硬链接 小结 动静态库 概念 动静态库的制作 静态库的制作 动态库的制作 前言 本文涉及到inode和地址空间等相关概念&#xff0c;不知道的小伙伴可以先阅读以下两篇文章…

网络安全是智能汽车下一个要卷的方向?

2024年一季度&#xff0c;中国汽车市场延续了2023年的风格&#xff0c;核心就是「卷」。 2023年&#xff0c;我国汽车市场爆发「最强价格战」&#xff0c;燃油车的市场空间不断被挤压&#xff0c;如今只剩下最后一口气。近日乘联会发布4月1-14日最新数据&#xff0c;新能源&am…

【前端】VUE项目创建

在所需文件夹中打开cmd命令行窗口&#xff0c;输入vue ui 进入web可视化界面选择创建新项目 根据需求依次完成下列选择&#xff0c;下列是参考配置&#xff0c;完成后点击创建项目即可 最终显示完成

CUDA和显卡驱动

1.安装显卡驱动 https://www.nvidia.com/download/index.aspx?langen-us 由于我的显卡是RTX4060&#xff0c;因此先选择RTX40系列&#xff0c;然后选择RTX4060&#xff0c;进行安装 2.查看显卡对应的CUDA CUDA安装地址&#xff1a;https://developer.nvidia.com/cuda-toolk…

应用分层和企业规范

目录 一、应用分层 1、介绍 &#xff08;1&#xff09;为什么需要应用分层&#xff1f; &#xff08;2&#xff09;如何分层&#xff1f;&#xff08;三层架构&#xff09; MVC 和 三层架构的区别和联系 高内聚&#xff1a; 低耦合&#xff1a; 2、代码重构 controlle…

【 书生·浦语大模型实战营】学习笔记(六):Lagent AgentLego 智能体应用搭建

&#x1f389;AI学习星球推荐&#xff1a; GoAI的学习社区 知识星球是一个致力于提供《机器学习 | 深度学习 | CV | NLP | 大模型 | 多模态 | AIGC 》各个最新AI方向综述、论文等成体系的学习资料&#xff0c;配有全面而有深度的专栏内容&#xff0c;包括不限于 前沿论文解读、…

相机知识的补充

一&#xff1a;镜头 1.1MP的概念 相机中MP的意思是指百万像素。MP是mega pixel的缩写。mega意为一百万&#xff0c;mega pixel 指意为100万像素。“像素”是相机感光器件上的感光最小单位。就像是光学相机的感光胶片的银粒一样&#xff0c;记忆在数码相机的“胶片”&#xff…

spring boot运行过程中动态加载Controller

1.被加载的jar代码 package com.dl;import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication;SpringBootApplication public class App {public static void main(String[] args) {SpringApplication.run(A…

C++函数模板

简介&#xff1a;C函数模板的作用就是按照程序员的要求生成想要的函数对象。本质上是一种函数声明&#xff0c;在程序运行时依靠指定的参数类型由编译器临时生成函数对象。 1、auto自动类型推导 auto关键字可以取代变量声明时的函数类型&#xff0c;其实实际上会由编译器帮你把…

智能私信神器,转化率飙升的秘密!

在当今信息爆炸的时代&#xff0c;企业和商家面临着巨大的竞争压力&#xff0c;如何有效地吸引潜在客户、提高客户转化率成为摆在每一位市场营销人员面前的难题。随着人工智能技术的不断发展&#xff0c;智能私信软件应运而生&#xff0c;为企业提供了一个高效、便捷的解决方案…

前端发起网络请求的几种常见方式(XMLHttpRequest、FetchApi、jQueryAjax、Axios)

摘要 前端发起网络请求的几种常见方式包括&#xff1a; XMLHttpRequest (XHR)&#xff1a; 这是最传统和最常见的方式之一。它允许客户端与服务器进行异步通信。XHR API 提供了一个在后台发送 HTTP 请求和接收响应的机制&#xff0c;使得页面能够在不刷新的情况下更新部分内容…

HSDB使用教程

HSDB&#xff1a;Hostspot Debugger&#xff0c;JVM内置的工具&#xff0c;用于深入分析JVM运行时的内部状态 启动HSDB java -cp D:/tools/jdk-1.8/lib/sa-jdi.jar sun.jvm.hotspot.HSDB 获取进程id jps 连接到指定进程 查找类 通过查询查找对象 输入查询语句 select d from …