使用 ORPO 微调 Llama 3

原文地址:https://towardsdatascience.com/fine-tune-llama-3-with-orpo-56cfab2f9ada

更便宜、更快的统一微调技术

2024 年 4 月 19 日

ORPO 是一种新的令人兴奋的微调技术,它将传统的监督微调和偏好校准阶段合并为一个过程。这减少了训练所需的计算资源和时间。此外,经验结果表明,在各种模型大小和基准上,ORPO 都优于其他配准方法。

在本文中,我们将使用 ORPO 和 TRL 库对新的 Llama 3 8B 模型进行微调。

ORPO

指令调整和偏好对齐是使大型语言模型(LLM)适应特定任务的基本技术。传统上,这涉及一个多阶段过程:1/ 对指令进行监督微调 (SFT),使模型适应目标领域;2/偏好调整方法,如人工反馈强化学习 (RLHF) 或直接偏好优化 (DPO),以提高生成首选响应而非拒绝响应的可能性。

12

不过,研究人员也发现了这种方法的局限性。虽然 SFT 能有效地使模型适应所需的领域,但却无意中增加了在生成首选答案的同时生成不想要的答案的概率。这就是为什么有必要进行偏好调整阶段,以拉大首选输出和拒绝输出的可能性之间的差距。

13

由 Hong 和 Lee(2024 年)提出的 ORPO 将指令调整和偏好调整结合到一个单一的、整体的训练过程中,为这一问题提供了一个优雅的解决方案。ORPO 修改了标准语言建模目标,将负对数似然损失与几率比(OR)项相结合。这种赔率损失会对被拒绝的反应进行弱惩罚,同时对偏好的反应进行强奖励,从而使模型能够同时学习目标任务并与人类偏好保持一致。

14

使用 ORPO 微调 Llama 3

Llama 3 是 Meta 开发的最新 LLM 系列。这些模型是在一个包含 15 万亿个词库(相比之下,Llama 2 包含 2T 个词库)的广泛数据集上训练的。目前已发布两种规模的模型:700 亿参数模型和较小的 80 亿参数模型。70B 模型已经表现出令人印象深刻的性能,在 MMLU 基准测试中获得 82 分,在 HumanEval 基准测试中获得 81.7 分。

Llama 3 模型还将上下文长度增加到 8,192 个标记(Llama 2 为 4,096 个标记),并有可能通过 RoPE 扩展到 32k。此外,这些模型还使用了具有 128K 标记词汇的新标记化器,从而将文本编码所需的标记数量减少了 15%。这个词汇量也是参数从 7B 增加到 8B 的原因。

15

ORPO 需要一个偏好数据集,包括提示、选择的答案和拒绝的答案。

按照惯例,我们先安装所需的库:

pip install -U transformers datasets accelerate peft trl bitsandbytes wandb

安装完成后,我们就可以导入必要的库并登录 W&B(可选):

import gc
import os
import torch
import wandb
from datasets import load_dataset
from google.colab import userdata
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training
from transformers import (AutoModelForCausalLM,AutoTokenizer,BitsAndBytesConfig,TrainingArguments,pipeline,
)
from trl import ORPOConfig, ORPOTrainer, setup_chat_format
wb_token = userdata.get('wandb')
wandb.login(key=wb_token)

如果你使用的是最新的 GPU,你还可以使用 Flash Attention 库,以更高效的方式替换默认的急切关注实现。

if torch.cuda.get_device_capability()[0] >= 8:!pip install -qqq flash-attnattn_implementation = "flash_attention_2"torch_dtype = torch.bfloat16
else:attn_implementation = "eager"torch_dtype = torch.float16

在下文中,我们将利用 bitsandbytes 以 4 位精度加载 Llama 3 8B 模型。然后,我们使用 QLoRA 的 PEFT 设置 LoRA 配置。我还使用方便的 setup_chat_format() 函数来修改模型和标记符,以支持 ChatML。它会自动应用聊天模板,添加特殊标记,并调整模型嵌入层的大小,以匹配新的词汇量大小。

# Model
base_model = "meta-llama/Meta-Llama-3-8B"
new_model = "OrpoLlama-3-8B"
# QLoRA config
bnb_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch_dtype,bnb_4bit_use_double_quant=True,
)
# LoRA config
peft_config = LoraConfig(r=16,lora_alpha=32,lora_dropout=0.05,bias="none",task_type="CAUSAL_LM",target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj']
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model)
# Load model
model = AutoModelForCausalLM.from_pretrained(base_model,quantization_config=bnb_config,device_map="auto",attn_implementation=attn_implementation
)
model, tokenizer = setup_chat_format(model, tokenizer)
model = prepare_model_for_kbit_training(model)

既然模型已经准备好进行训练,我们就可以处理数据集了。我们加载 mlabonne/orpo-dpo-mix-40k 并使用 apply_chat_template() 函数将 "选择 "和 "拒绝 "列转换为 ChatML 格式。请注意,我只使用了 1,000 个样本,而不是整个数据集,因为这样运行时间太长。

dataset_name = "mlabonne/orpo-dpo-mix-40k"
dataset = load_dataset(dataset_name, split="all")
dataset = dataset.shuffle(seed=42).select(range(10))
def format_chat_template(row):row["chosen"] = tokenizer.apply_chat_template(row["chosen"], tokenize=False)row["rejected"] = tokenizer.apply_chat_template(row["rejected"], tokenize=False)return row
dataset = dataset.map(format_chat_template,num_proc= os.cpu_count(),
)
dataset = dataset.train_test_split(test_size=0.01)

首先,我们需要设置几个超参数:

  • 学习率: 与传统的 SFT 甚至 DPO 相比,ORPO 使用非常低的学习率。这个 8e-6 的值来自原始论文,大致相当于 1e-5 的 SFT 学习率和 5e-6 的 DPO 学习率。我建议将其提高到 1e-6 左右,以进行真正的微调。
  • beta: 它是论文中的 $\lambda$ 参数,默认值为 0.1。原始论文的附录展示了如何通过烧蚀研究来选择它。
  • 其他参数,如 max_length 和批量大小,都设置为使用尽可能多的可用 VRAM(在此配置中约为 20 GB)。理想情况下,我们会对模型进行 3-5 个历元的训练,但这里我们会坚持使用 1 个历元。

最后,我们可以使用 ORPOTrainer 对模型进行训练。

orpo_args = ORPOConfig(learning_rate=8e-6,beta=0.1,lr_scheduler_type="linear",max_length=1024,max_prompt_length=512,per_device_train_batch_size=2,per_device_eval_batch_size=2,gradient_accumulation_steps=4,optim="paged_adamw_8bit",num_train_epochs=1,evaluation_strategy="steps",eval_steps=0.2,logging_steps=1,warmup_steps=10,report_to="wandb",output_dir="./results/",
)
trainer = ORPOTrainer(model=model,args=orpo_args,train_dataset=dataset["train"],eval_dataset=dataset["test"],peft_config=peft_config,tokenizer=tokenizer,
)
trainer.train()
trainer.save_model(new_model)

在 L4 GPU 上对这 1,000 个样本进行模型训练耗时约 2 小时。我们来看看 W&B 图:

16

虽然损失减少了,但选择答案和拒绝答案之间的差异并不明显:平均余量和准确率分别仅略高于零和 0.5。

在原始论文中,作者在 Anthropic/hh-rlhf 数据集(161k 个样本)上训练了 10 个历时的模型,这比我们快速运行的时间要长得多。他们还使用 Llama 3 进行了实验,并慷慨地分享了他们的日志。

在本文的最后,让我们将 QLoRA 适配器与基础模型合并,并将其推送到Hugging Face Hub。

# Flush memory
del trainer, model
gc.collect()
torch.cuda.empty_cache()
# Reload tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model,low_cpu_mem_usage=True,return_dict=True,torch_dtype=torch.float16,device_map="auto",
)
model, tokenizer = setup_chat_format(model, tokenizer)
# Merge adapter with base model
model = PeftModel.from_pretrained(model, new_model)
model = model.merge_and_unload()
model.push_to_hub(new_model, use_temp_dir=False)
tokenizer.push_to_hub(new_model, use_temp_dir=False)

现在,我们完成了对 Llama 3 的快速微调:mlabonne/OrpoLlama-3-8B。你可以使用这个 "Hugging Face Space"来体验一下。正如 W&B 曲线所示,虽然模型训练不足,但我还是使用 LLM AutoEval 在 Nous 的基准套件上进行了一些评估。

17

我们的 ORPO 微调实际上非常不错,在每个基准测试中都提高了基本型号的性能。这是令人鼓舞的,很可能意味着对整个 40k 样本进行微调会产生很好的结果。

对于开源社区来说,这是一个激动人心的时刻,越来越多的高质量开放重量模型被发布。闭源模型和开放重量模型之间的差距正在慢慢缩小,而微调是为你的使用案例获得最佳性能的重要工具。

18

结论

在本文中,我们介绍了 ORPO 算法,并解释了它如何将 SFT 和偏好校准阶段统一为一个过程。然后,我们使用 TRL 在自定义偏好数据集上对 Llama 3 8B 模型进行了微调。最终的模型显示了令人鼓舞的结果,并凸显了 ORPO 作为一种新的微调范例的潜力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/319307.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java零基础入门到精通_Day 8

1.API 应用程序接口 Java API:指的就是JDK 中提供的各种功能的Java类这些类将底层的实现封装了起来,我们不需要关心这些类是如何实现的,只需要学习这些类如何使用即可,我们可以通过帮助文档来学习这些API如何使用。 2. String String 类…

【副本向】Lua副本逻辑

副本生命周期 OnCopySceneTick() 子线程每次心跳调用 --副本心跳 function x3323_OnCopySceneTick(elapse)if x3323_g_IsPlayerEnter 0 thenreturn; -- 如果没人进入,则函数直接返回endif x3323_g_GameOver 1 thenif x3323_g_EndTick > 0 thenx3323_CountDown…

循环神经网络完整实现(Pytorch 13)

一 循环神经网络的从零开始实现 从头开始基于循环神经网络实现字符级语言模型。 %matplotlib inline import math import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2lbatch_size, num_steps 32, 35 train_iter, vocab …

分布式websocket IM即时通讯聊天开源项目如何启动

前言 自己之前分享了分布式websocket的视频有同学去fork项目了,自己启动一下更方便理解项目嘛。然后把项目启动需要的东西全部梳理出来。支持群聊单聊,表情包以及发送图片。 支持消息可靠,消息防重,消息有序。同时基础架构有分布式权限&…

OneFlow深度学习框原理、用法、案例和注意事项

本文将基于OneFlow深度学习框架,详细介绍其原理、用法、案例和注意事项。OneFlow是由中科院计算所自动化研究所推出的深度学习框架,专注于高效、易用和扩展性强。它提供了一种类似于深度学习库的接口,可以用于构建神经网络模型,并…

Android4.4真机移植过程笔记(三)

如果文章字体看得不是很清楚,大家可以下载pdf文档查看,文档已上传~oo~ 7、安装加密APK 需要修改文件如下: 相对Android4.2改动还是蛮大的,有些文件连路径都变了: //Android4.2 1、frameworks/native/libs…

STL速查

容器 (Containers) 图解容器 支持随机访问 stringarrayvectordeque支持支持支持支持 string 类 构造函数 string(); ------创建一个空的字符串 例如: string str;string(const char* s); ------使用字符串s初始化string(const string& str); ------拷贝构造 赋值操作…

C++学习--点滴记录011

11函数提高 11.1 函数默认参数 在C中&#xff0c;函数的形参列表中的形参可以有默认值 语法&#xff1a; 返回值类型 函数名 &#xff08;参数 默认值&#xff09;{} 示例&#xff1a; #include <iostream> using namespace std;int func(int a, int b 10, int c …

网络基础-网络设备介绍

本系列文章主要介绍思科、华为、华三三大厂商的网络设备 网络设备 网络设备是指用于构建和管理计算机网络的各种硬件设备和设备组件。以下是常见的网络设备类型&#xff1a; 路由器&#xff08;Router&#xff09;&#xff1a;用于连接不同网络并在它们之间转发数据包的设备…

wpf线程中更新UI的4种方式

在wpf中&#xff0c;更新UI上面的数据&#xff0c;那是必经之路&#xff0c;搞不好&#xff0c;就是死锁&#xff0c;或者没反应&#xff0c;很多时候&#xff0c;都是嵌套的非常深导致的。但是更新UI的方式&#xff0c;有很多的种&#xff0c;不同的方式&#xff0c;表示的意思…

国内各种免费AI聊天机器人(ChatGPT)推荐(中)

作者主页&#xff1a;点击&#xff01; 国内免费AI推荐(ChatGPT)专栏&#xff1a;点击&#xff01; 创作时间&#xff1a;2024年4月29日15点20分 随着人工智能技术的不断发展&#xff0c;AI聊天机器人已经逐渐融入我们的日常生活。它们可以提供各种服务&#xff0c;例如聊天、…

Golang | Leetcode Golang题解之第68题文本左右对齐

题目&#xff1a; 题解&#xff1a; // blank 返回长度为 n 的由空格组成的字符串 func blank(n int) string {return strings.Repeat(" ", n) }func fullJustify(words []string, maxWidth int) (ans []string) {right, n : 0, len(words)for {left : right // 当前…

leetCode72. 编辑距离

leetCode72. 编辑距离 基本思路&#xff1a; 代码 class Solution { public:int minDistance(string a, string b) {// a,b的0不做表示&#xff0c;所以从1开始&#xff0c;dp状态表示&#xff0c;这种办法会很方便a a, b b;int n a.size();int m b.size(); // 定…

Elasticsearch 数据聚合

Bucket聚合&#xff08;桶聚合&#xff09; 对文档做分组&#xff0c;aggs 按照文档字段值或日期进行分组&#xff0c;能参与分词的字段不能做聚合&#xff0c;如text类型的字段 例如&#xff1a;根据城市名称做聚合&#xff0c;也就是城市名称对数据进行分组统计。可以加qu…

Sarcasm detection论文解析 |使用基于多头注意力的双向 LSTM 进行讽刺检测

论文地址 论文地址&#xff1a;https://ieeexplore.ieee.org/document/8949523 论文首页 笔记框架 使用基于多头注意力的双向 LSTM 进行讽刺检测 &#x1f4c5;出版年份:2020 &#x1f4d6;出版期刊:IEEE Access &#x1f4c8;影响因子:3.9 &#x1f9d1;文章作者:Kumar Avinas…

Educational Codeforces Round 165 (Rated for Div. 2) (C、D)

1969C - Minimizing the Sum 题意&#xff1a; 思路&#xff1a;观察到操作数很小&#xff0c;最值问题操作数很容易想到dp&#xff0c;用表示第个元素&#xff0c;操作了次的最小值总和&#xff0c;转移的时候枚举连续操作了几次即可&#xff0c;而连续操作了几次即将全部变成…

Llama改进之——SwiGLU激活函数

引言 今天介绍LLAMA模型引入的关于激活函数的改进——SwiGLU1&#xff0c;该激活函数取得了不错的效果&#xff0c;得到了广泛地应用。 SwiGLU是GLU的一种变体&#xff0c;其中包含了GLU和Swish激活函数。 GLU GLU(Gated Linear Units,门控线性单元)2引入了两个不同的线性层…

UE5 蓝图入门

基础节点创建&#xff1a; 常量&#xff1a; 按住 1 &#xff0c;点击鼠标左键&#xff0c;创建常量 二维向量&#xff1a; 按住 2 &#xff0c;点击鼠标左键&#xff0c;创建二维向量 三维向量&#xff1a; 按住 3 &#xff0c;点击鼠标左键 乘法&#xff1a; 按住 m 键…

基于node.js+css+html+mysql博客系统

博主介绍&#xff1a; 大家好&#xff0c;本人精通Java、Python、Php、C#、C、C编程语言&#xff0c;同时也熟练掌握微信小程序、Android等技术&#xff0c;能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验&#xff0c;能够为学生提供各类…

Mysql技能树学习

查询进阶 别名 MySQL支持在查询数据时为字段名或表名指定别名&#xff0c;指定别名时可以使用AS关键字。 BETWEEN AND条件语句 mysql> SELECT * FROM t_goods WHERE id BETWEEN 6 AND 8; 查询特定数据 &#xff08;CASE&#xff09; select name,case when price <…