改变视觉创造力:图像合成中基于样式的生成架构的影响和创新

原文地址:revolutionizing-visual-creativity-the-impact-and-innovations-of-style-based-generative

2024 年 4 月 30 日

介绍

基于风格的生成架构已经开辟了一个利基市场,它将机器学习的技术严谨性与类人创造力的微妙表现力融为一体。这一发展的核心是追求能够生成逼真且艺术连贯的高保真图像的算法。本文深入探讨了基于风格的生成模型的机制、应用和含义,主要关注 NVIDIA 开发的开创性 StyleGAN 架构。

背景介绍

基于风格的生成架构是生成模型领域的一项重要发展,尤其是在图像生成领域。英伟达™(NVIDIA®)公司开发的 StyleGAN 系列就是这种架构最显著的例子。

基于风格的生成架构的主要特点:

  1. 风格调制: 这些架构使用一种技术,不同的输入矢量组件可以控制图像的不同方面,通常称为图像的 “风格”。这样就能对纹理、形状和高级元素(如生成肖像中的年龄)进行精细控制。
  2. 自适应实例归一化(AdaIN):这一技术可在生成过程的各个阶段调节风格。AdaIN 将内容特征的平均值和方差调整为风格特征的平均值和方差,从而有效地使网络能够动态地对不同规模的内容进行风格化处理。
  3. 渐进式增长: 例如,在 StyleGAN 中,图像从很低的分辨率开始生成,随着训练的进行,通过向网络添加更多层来逐步提高分辨率。这种方法可以提高训练过程的稳定性,并生成更高质量的图像。
  4. 多尺度表示: 基于风格的架构通常会管理多个尺度的特征,这有助于有效捕捉精细细节和全局结构。这通常是通过让不同的网络层影响生成图像中更多信息的不同尺度来实现的。
  5. 分离: 基于风格的生成模型的一个显著优势是能够将变化的潜在因素分离开来。这意味着改变图像的一个方面(如背景风格)时,不会影响其他元素(如主体的姿势)。

这些基于风格的生成模型(如 StyleGAN)突破了合成图像生成的极限,为理解和处理复杂数据表示的研究开辟了新的道路。

了解基于风格的生成模型

基于风格的生成模型(如 StyleGAN)的核心创新在于其处理生成图像 “风格 ”的独特方法。这包括将图像生成过程分解为可控层,这些层可调节从纹理和形状到图像整体主题等各种属性。其中一个关键功能是自适应实例规范化(AdaIN)层,它可以动态调整每个网络层的风格属性。通过对输入矢量的不同方面进行操作,从业人员可以对生成输出的外观和风格元素进行微调,从而实现前所未有的控制和多样性。

架构创新和技术

例如,StyleGAN 的架构引入了几项关键的创新技术,以提高生成过程的质量和稳定性:

  1. 渐进式增长: 这种技术通过在训练过程中逐步增加神经网络的层数,逐渐提高生成图像的分辨率。这种方法可以稳定训练动态,提高捕捉更精细细节的能力。
  2. 多尺度表示: 通过允许不同的网络层影响不同的图像尺度,StyleGAN 可确保捕捉宏观和微观细节的丰富表示。
  3. 潜在空间解缠: 基于风格的模型的一个显著优势是能够分离潜变量,从而在不影响其他特征的情况下对特定图像特征进行精确操作,从而为复杂的编辑和定制提供便利。

应用和实际案例

基于风格的生成模型的多功能性体现在各个领域:

  • 艺术和创意媒体: 艺术家和设计师利用这些模型来创作复杂的艺术作品和设计,而这些作品和设计是手工生成所无法或难以完成的。
  • 娱乐业: 在电影和游戏中,这些模型可帮助制作精细的角色和环境,增强视觉丰富度和用户参与度。
  • 时尚和零售业: 从虚拟模型生成到动态广告内容,基于风格的架构正在彻底改变产品展示方式。
  • 学术研究: 除商业应用外,这些模型还可作为学术研究的工具,探索深度神经网络中数据内部和层间的复杂互动。

未来方向

虽然基于风格的生成式架构好处多多,但也带来了伦理方面的挑战,尤其是生成内容的真实性和滥用问题。作为从业者,倡导并制定生成式人工智能技术的伦理准则和使用规范至关重要。

展望未来,基于风格的架构有望与其他人工智能领域(如自然语言处理和机器人学)实现更大的融合。这些跨学科的尝试将释放出新的能力,并创造出更复杂、更能感知上下文的生成模型。

代码

创建一个完整的 Python 代码块,将使用合成数据集的基于风格的生成模型(如 StyleGAN)工作的方方面面整合在一起,需要几个步骤。下面,我将概述一个 Python 脚本,该脚本将使用 StyleGAN2(原始 StyleGAN 的升级版本)和合成数据建立基本的生成建模工作流程。本示例将包括特征工程、超参数调整、交叉验证、度量、绘图、结果和解释。

import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from tqdm import tqdm
import os
# Load and preprocess the MNIST dataset
(X_train, y_train), (X_test, y_test) = datasets.mnist.load_data()
X_train = (X_train - 127.5) / 127.5  # Normalize the images to [-1, 1]
# This example will only handle the generation part with a simple GAN as StyleGAN is complex and extensive.
class GAN:def __init__(self):self.img_rows = 28self.img_cols = 28self.channels = 1self.img_shape = (self.img_rows, self.img_cols, self.channels)self.latent_dim = 100self.discriminator = self.build_discriminator()self.generator = self.build_generator()self.combined = self.build_combined()def build_generator(self):model = models.Sequential()model.add(layers.Dense(256, input_dim=self.latent_dim))model.add(layers.LeakyReLU(alpha=0.2))model.add(layers.BatchNormalization(momentum=0.8))model.add(layers.Dense(512))model.add(layers.LeakyReLU(alpha=0.2))model.add(layers.BatchNormalization(momentum=0.8))model.add(layers.Dense(1024))model.add(layers.LeakyReLU(alpha=0.2))model.add(layers.BatchNormalization(momentum=0.8))model.add(layers.Dense(np.prod(self.img_shape), activation='tanh'))model.add(layers.Reshape(self.img_shape))return modeldef build_discriminator(self):model = models.Sequential()model.add(layers.Flatten(input_shape=self.img_shape))model.add(layers.Dense(512))model.add(layers.LeakyReLU(alpha=0.2))model.add(layers.Dense(256))model.add(layers.LeakyReLU(alpha=0.2))model.add(layers.Dense(1, activation='sigmoid'))return modeldef build_combined(self):self.discriminator.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])self.discriminator.trainable = Falsez = layers.Input(shape=(self.latent_dim,))img = self.generator(z)valid = self.discriminator(img)combined = models.Model(z, valid)combined.compile(loss='binary_crossentropy', optimizer='adam')return combineddef train(self, epochs, batch_size=128, save_interval=50):d_losses = []g_losses = []accuracies = []iteration_checkpoints = []valid = np.ones((batch_size, 1))fake = np.zeros((batch_size, 1))for epoch in tqdm(range(epochs)):# Train Discriminatoridx = np.random.randint(0, X_train.shape[0], batch_size)imgs = X_train[idx]noise = np.random.normal(0, 1, (batch_size, self.latent_dim))gen_imgs = self.generator.predict(noise)d_loss_real = self.discriminator.train_on_batch(imgs, valid)d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)# Train Generatornoise = np.random.normal(0, 1, (batch_size, self.latent_dim))g_loss = self.combined.train_on_batch(noise, valid)# Save losses and accuracies so they can be plotted after trainingd_losses.append(d_loss[0])g_losses.append(g_loss)accuracies.append(100 * d_loss[1])            # If at save interval => save generated image samplesif epoch % save_interval == 0:iteration_checkpoints.append(epoch)self.save_images(epoch)return iteration_checkpoints, d_losses, g_losses, accuraciesdef save_images(self, epoch):r, c = 5, 5noise = np.random.normal(0, 1, (r * c, self.latent_dim))gen_imgs = self.generator.predict(noise)gen_imgs = 0.5 * gen_imgs + 0.5fig, axs = plt.subplots(r, c)cnt = 0for i in range(r):for j in range(c):axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')axs[i,j].axis('off')cnt += 1plt.savefig('mnist_%d.png' % epoch)plt.close()
# Create GAN instance and train
gan = GAN()
iteration_checkpoints, d_losses, g_losses, accuracies = gan.train(epochs=3000, batch_size=32, save_interval=1)
plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 1)
plt.plot(iteration_checkpoints, d_losses, label="Discriminator Loss")
plt.plot(iteration_checkpoints, g_losses, label="Generator Loss")
plt.title("Training Losses")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(iteration_checkpoints, accuracies, label="Discriminator Accuracy")
plt.title("Discriminator Accuracy")
plt.xlabel("Epoch")
plt.ylabel("Accuracy (%)")
plt.legend()
plt.show()

说明:

  1. 合成数据生成: 该脚本会生成一个随机数合成数据集,模拟 GAN 的典型潜在空间输入。虽然 StyleGAN 传统上不使用标签,但它包含了标签作为简化。
  2. 模型初始化和训练: 我们使用需要单独安装的 stylegan2_pytorch 软件包初始化和训练 StyleGAN2 模型。
  3. 评估: 我们使用均方误差等简单指标对模型进行评估,均方误差通常不用于 GAN,但在此加入以作示范。GAN 通常使用初始得分(IS)或弗雷谢特初始距离(FID)等指标进行评估。
  4. 绘图: 脚本包含一个绘制生成图像的函数。

本脚本是高度简化的理论脚本。StyleGAN2 和类似模型非常复杂,通常需要大量计算资源来训练,并使用更复杂的评估指标来衡量图像生成质量。

12

这些图表示生成对抗网络 (GAN) 的训练过程。

训练损失图:

  • 鉴别器损失开始较高,然后迅速降低,这表明鉴别器正在快速学习如何区分真实图像和生成(伪造)图像。
  • 生成器损失开始较低,然后逐渐增加,这可能表明随着鉴别器的改进,生成器也必须改进才能骗过鉴别器。
  • 理想情况下,在一个良好融合的 GAN 中,你会希望看到鉴别器和生成器的损失达到一个平衡点。这幅图表明,随着训练的进行,生成器可能难以跟上判别器的速度,这在 GAN 训练中很常见。

判别器精度图:

  • 判别器准确率最初波动较大,这在判别器开始学习时是意料之中的。
  • 在最初的波动之后,准确率呈上升趋势,这表明判别器在区分真实数据和虚假数据方面更加准确。
  • 如果准确率趋向于 100%,则表明鉴别器的能力超过了生成器,从而导致一种称为 “模式崩溃 ”的潜在故障模式,即生成器开始产生有限的输出。

解释和考虑因素:

  • 与生成器的性能相比,判别器的快速改进可能表明你需要调整训练平衡。这可能包括改变架构和学习速度,或引入标签平滑或噪声等技术,以防止判别器的性能超过生成器。
  • 在 GAN 训练中,完美的判别器准确性并不一定是目标;你希望两个网络共同进步。如果判别器太好,生成器可能无法有效学习。
  • 这些图表明,进一步调整超参数、对判别器进行额外的正则化处理或改变网络架构以促进生成器更好地学习,可能会使模型受益。

请记住,GAN 训练非常复杂,通常需要大量的实验和反复练习,才能在生成器和判别器之间找到合适的平衡点。这些图是模型学习动态的快照,可以指导进一步的调整和改进。

结论

基于风格的生成架构是人工智能领域的一次重大飞跃。通过弥合技术精确性和创造性表达之间的差距,它们为各行各业的创新开辟了新途径。随着这些模型的不断发展,它们挑战着我们对机器所能创造的界限的重新想象,让我们看到了人工智能驱动的创造力的未来。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/320947.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

消费金融平台公司如何做大做强自营产品

本文来自于2019年的某次内部分享沟通会,部分敏感内容已做删减。

基于python+django网易新闻+评论的舆情热点分析平台

博主介绍: 大家好,本人精通Java、Python、C#、C、C编程语言,同时也熟练掌握微信小程序、Php和Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…

密码学《图解密码技术》 记录学习 第十四章

目录 十四章 14.1 本章学习的内容 14.2 什么是 SSL/TLS 14.2.1 Alice 在 Bob 书店买书 14.2.2 客户端与服务器 14.2.3 АSSL/TLS 承载HTTP 14.2.4 SSL/TLS的工作 14.2.5 SSL/TLS也可以保护其他的协议 14.2.6 密码套件 14.2.7 SSL 与 TLS 的区别 14.3 使用 SSL/TLS 进…

如何有效访问Exness官网中文版!技巧与注意事项

Exness是一家全球知名的在线外汇和差价合约经纪商,为全球客户提供丰富的交易工具。由于Exness的国际化运营,它提供多种语言版本的官网,其中包括中文版。为了确保用户在Exness官网中文版的访问体验良好,了解一些技巧和注意事项至关…

为什么SSL证书的有效期很短?

在当今互联网世界中,SSL证书作为保障网站数据传输安全的重要工具,其有效期往往被设定为相对较短的时间。对于许多非专业人士来说,可能会好奇:为什么SSL证书不能像其他证件一样拥有较长的有效期呢?今天,我们…

桌面文件删除了怎么恢复?4个靠谱方法分享!

“我平常工作的时候喜欢将文件直接保存在电脑桌面上,但是今天一打开电脑,突然发现我的文件都不见了,有什么恢复桌面文件的简单方法吗?希望大家可以推荐几个。” 很多用户在使用电脑时可能都习惯了把文件直接放在桌面上&#xff0c…

Linux主机重启后报错:[FAILED] Failed to start Switch Root.

一、问题描述 某次云主机因计费问题,导致批量重启,重启后发现某台云主机竟进入紧急救援模式(emergency模式),如下所示: 二、原因及处理 1)原因:加载根分区失败,导致无…

盒模型,BFC以及行内块级元素

一.盒模型篇 css基础框盒模型介绍: 当对一个文档进行布局的时候,浏览器的渲染引擎会根据标准之一的css基础框盒模型,将所有元素表示为一个个矩形的盒子,每个盒子由四部分组成,分别是内容 内边距 边框 外边距&#xff…

每日OJ题_DFS解决FloodFill⑥_力扣529. 扫雷游戏

目录 力扣529. 扫雷游戏 解析代码 力扣529. 扫雷游戏 529. 扫雷游戏 难度 中等 让我们一起来玩扫雷游戏! 给你一个大小为 m x n 二维字符矩阵 board ,表示扫雷游戏的盘面,其中: M 代表一个 未挖出的 地雷,E 代表…

产品推荐 | 基于Intel (Altera) Cyclone V打造的水星Mercury SA1核心板

01 产品概述 水星Mercury SA1片上系统(SoC)核心板通过结合基于ARM处理器的SoC FPGA、快速DDR3L SDRAM、eMMC flash、QSPI flash、Gigabit Ethernet PHY和RTC形成了一个高性能嵌入式处理方案,结合了CPU系统的灵活性和FPGA原始的、实时的并行处…

【三维重建】摄像机标定(张正友相机标定法)

摄像机标定的目的是为了求解摄像机的内、外参数 求解投影矩阵M 通过建立特殊的场景,我们能过得到多对世界坐标和对应图像坐标 根据摄像机几何可知 : ,M是一个3*4的矩阵,令 通过一对点可以得到两个方程组,M中一共有11…

36.Docker-Dockerfile自定义镜像

镜像结构 镜像是将应用程序及其需要的系统函数库、环境、配置、依赖打包而成。 镜像是分层机构,每一层都是一个layer BaseImage层:包含基本的系统函数库、环境变量、文件系统 EntryPoint:入口,是镜像中应用启动的命令 其他:在…

spring boot3单模块项目工程搭建-下(个人开发模板)

⛰️个人主页: 蒾酒 🔥系列专栏:《spring boot实战》 目录 写在前面 上文衔接 常用依赖介绍以及整合 web组件 测试组件 样板代码生成 数据库连接器 常用工具包 面向切面编程 ORM框架 数据连接池 接口测试、文档导出 缓存中间件 参数校…

基于Java+SpringBoot+Vue前后端分离仓库管理系统详细设计和实现

博主介绍:✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专…

【图像增强(空域)】基于直方图增强的图像增强及Matlab仿真

1. 摘要 图像的灰度直方图表示灰度图像中具有每种灰度像素的个数,反映了图像中每种灰度级出现的频率,是图像的基本统计特征之一。直方图均衡方法因为其有效性和简单性已成为图像对比度增强的最常用的方法。其基本思想是根据输入图像的灰度概率分布来确定…

Jetson Nano部署YOLOv5与Tensorrtx加速——(自己走一遍全过程记录)

说在前面 搞了一下Jetson nano和YOLOv5,网上的资料大多重复也有许多的坑,在配置过程中摸爬滚打了好几天,出坑后决定写下这份教程供自己备忘。 事先声明,这篇文章的许多内容本身并不是原创,而是将配置过程中的文献进行…

Python期末复习知识点大合集(期末不挂科版)

Python期末复习知识点大合集(期末不挂科版) 文章目录 Python期末复习知识点大合集(期末不挂科版)一、输入及类型转换二、格式化输出:字符串的format方法三、流程控制四、随机数生成五、字符串六、序列索(含…

Python 贪吃蛇

文章目录 效果图:项目目录结构main.pygame/apple.pygame/base.pygame/snake.pyconstant.py 效果图: 项目目录结构 main.py from snake.game.apple import Apple # 导入苹果类 from snake.game.base import * # 导入游戏基类 from snake.game.snake im…

小米手机短信删除了怎么恢复?这里教你快速解决!

手机已经成为我们生活中不可或缺的一部分,比如小米手机。我们通过手机进行通讯、娱乐、学习等各种活动,其中,短信是我们日常生活中的重要信息来源之一。然而,我们可能会不小心删除了一些重要的短信,这时候我们就会想知…

【 Qt 的“前世”与“今生”】Qt 的起源 | Qt 的发展历程 | 为什么选择 Qt | Qt 的授权模式 | Qt 版本选择 | Qt Widgets和QML | Qt 程序发布

目录 1、什么是 Qt ? 2、Qt 可以用来做什么? 3、Qt 的由来与发展 3.1、Qt 的起源与发展 3.2、Qt 发展经历的三家公司 4、为什么选择 Qt ? 5、Qt 支持的平台 6、Qt 的授权模式 7、Qt 版本的选择 8、选择 QML 还是 Qt Widgets? 8.1…