paddlespeech asr语音转录文字;sherpa 实时、离线、rtsp流语音转录

1、paddlespeech asr语音转录文字

参考:
https://github.com/PaddlePaddle/PaddleSpeech

安装后运行可能会numpy相关报错;可能是python和numpy版本高的问题,我这里最终解决是python 3.10 numpy 1.22.0;

pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
pip install paddlespeech

1)代码

模型默认下载保存位置:C:\Users\loong.paddlespeech\models下

from paddlespeech.cli.asr.infer import ASRExecutor
asr = ASRExecutor()
result = asr(audio_file="zh.wav")  ##第一次运行会首先下载自动模型
print(result)

在这里插入图片描述

2)实时语音转录

参考:https://www.cnblogs.com/chenkui164/p/16296941.html
https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/demos/streaming_asr_server/README.md
https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/demos/streaming_asr_server/web

paddlespeech_server stats --task asr  ##可以擦好看支持的模型,更改模型该yaml文件

在这里插入图片描述

## 首先运行asr服务器
# 开启流式语音识别服务
cd PaddleSpeech/demos/streaming_asr_server
paddlespeech_server start --config_file conf/ws_conformer_wenetspeech_application_faster.yaml

在这里插入图片描述
运行后运行demo里的\demos\streaming_asr_server\web\index.html文件测试:
在这里插入图片描述

pyaudio实时录制声音及保存wav
import pyaudio,wave#导入相关的库#实例化一个pyaudio对象
pa=pyaudio.PyAudio()#设置声卡参数
chunk=1024#帧长度
Format=pyaudio.paInt16#采样深度
CHANNELS=2#声道
RATE=16000#采样率
record_seconds=5#设置录制时间
#RATE/chunk*record_seconds为一秒采样数除以一帧长度和录制秒数可以得到帧数#新建一个列表,用来存储数据
record_list=[]#打开声卡,设置参数,设置音频流
stream=pa.open(format=Format,rate=RATE,channels=CHANNELS,frames_per_buffer=chunk,input=True)#开始录制
print('开始录制...')#进行录制与采样
for i in range(0,int(RATE/chunk*record_seconds)):data=stream.read(chunk)#为每一帧的样本二进制数据record_list.append(data)#得到的是保存的二进制数据#录制完成
stream.stop_stream()#停止调用声卡
stream.close()#关闭声卡
pa.terminate()#结束pyaudio对象
print('录制结束...')#保存音频文件(wav文件类型)
file=wave.open('voice.wav','wb')#创建voice文件
file.setnchannels(CHANNELS)#设置声道数
file.setsampwidth(pa.get_sample_size(Format))#设置采样宽度,通过pa.get_sample_size(format)可以得到
file.setframerate(RATE)#设置采样率
file.writeframes(b''.join(record_list))#将二进制文件加入到wav文件之中
file.close()

2、sherpa 实时语音转录

1)ncnn版本
参考:https://github.com/k2-fsa/sherpa-ncnn
https://www.bilibili.com/video/BV1K44y197Fg

安装:

pip install sherpa-ncnn   sounddevice  -i https://mirror.baidu.com/pypi/simple

下载:
1)下载项目:git clone https://github.com/k2-fsa/sherpa-ncnn.git
在这里插入图片描述
2)下载模型
https://huggingface.co/marcoyang/sherpa-ncnn-streaming-zipformer-zh-14M-2023-02-23
下载这7个文件
在这里插入图片描述

运行:
https://k2-fsa.github.io/sherpa/ncnn/python/index.html#start-recording

#!/usr/bin/env python3# Real-time speech recognition from a microphone with sherpa-ncnn Python API
#
# Please refer to
# https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html
# to download pre-trained modelsimport systry:import sounddevice as sd
except ImportError as e:print("Please install sounddevice first. You can use")print()print("  pip install sounddevice")print()print("to install it")sys.exit(-1)import sherpa_ncnndef create_recognizer():# Please replace the model files if needed.# See https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html# for download links.recognizer = sherpa_ncnn.Recognizer(tokens="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/tokens.txt",encoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.param",encoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.bin",decoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.param",decoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.bin",joiner_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.param",joiner_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.bin",num_threads=4,)return recognizerdef main():print("Started! Please speak")recognizer = create_recognizer()sample_rate = recognizer.sample_ratesamples_per_read = int(0.1 * sample_rate)  # 0.1 second = 100 mslast_result = ""with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:while True:samples, _ = s.read(samples_per_read)  # a blocking readsamples = samples.reshape(-1)recognizer.accept_waveform(sample_rate, samples)result = recognizer.textif last_result != result:last_result = resultprint("\r{}".format(result), end="", flush=True)if __name__ == "__main__":devices = sd.query_devices()print(devices)default_input_device_idx = sd.default.device[0]print(f'Use default device: {devices[default_input_device_idx]["name"]}')try:main()except KeyboardInterrupt:print("\nCaught Ctrl + C. Exiting")

在这里插入图片描述

**修改结果打印效果,去除重复打印结果,结果每次只打印新增的,避免上面每次都打印一遍之前已经识别的内容

if last_result != result:if i==0:print("{}".format(result),end='')last_result = resulti=i+1else:last_result_len=len(last_result)new_word = result[last_result_len:]# print(last_result,result,new_word)print("{}".format(new_word),end='', flush=True)last_result = result

在这里插入图片描述
2)onnx版本
参考:https://k2-fsa.github.io/sherpa/onnx/python/install.html
https://github.com/k2-fsa/sherpa-onnx/blob/master/python-api-examples/speech-recognition-from-microphone.py

安装:
pip install sherpa-onnx

下载模型:
https://huggingface.co/csukuangfj/sherpa-onnx-streaming-conformer-zh-2023-05-23/tree/main

代码:
运行:python ./speech-recognition-from-microphone-onnx.py --tokens=./sherpa-onnx-streaming-conformer-zh-2023-05-23/tokens.txt --encoder=./sherpa-onnx-streaming-conformer-zh-2023-05-23/encoder-epoch-99-avg-1.onnx --decoder=./sherpa-onnx-streaming-conformer-zh-2023-05-23/decoder-epoch-99-avg-1.onnx --joiner=./sherpa-onnx-streaming-conformer-zh-2023-05-23/joiner-epoch-99-avg-1.onnx

#!/usr/bin/env python3# Real-time speech recognition from a microphone with sherpa-onnx Python API
#
# Please refer to
# https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
# to download pre-trained modelsimport argparse
import sys
from pathlib import Pathtry:import sounddevice as sd
except ImportError:print("Please install sounddevice first. You can use")print()print("  pip install sounddevice")print()print("to install it")sys.exit(-1)import sherpa_onnxdef assert_file_exists(filename: str):assert Path(filename).is_file(), (f"{filename} does not exist!\n""Please refer to ""https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it")def get_args():parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)parser.add_argument("--tokens",type=str,help="Path to tokens.txt",)parser.add_argument("--encoder",type=str,help="Path to the encoder model",)parser.add_argument("--decoder",type=str,help="Path to the decoder model",)parser.add_argument("--joiner",type=str,help="Path to the joiner model",)parser.add_argument("--decoding-method",type=str,default="greedy_search",help="Valid values are greedy_search and modified_beam_search",)return parser.parse_args()def create_recognizer():args = get_args()assert_file_exists(args.encoder)assert_file_exists(args.decoder)assert_file_exists(args.joiner)assert_file_exists(args.tokens)# Please replace the model files if needed.# See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html# for download links.recognizer = sherpa_onnx.OnlineRecognizer(tokens=args.tokens,encoder=args.encoder,decoder=args.decoder,joiner=args.joiner,num_threads=1,sample_rate=16000,feature_dim=80,decoding_method=args.decoding_method,)return recognizerdef main():recognizer = create_recognizer()print("Started! Please speak")# The model is using 16 kHz, we use 48 kHz here to demonstrate that# sherpa-onnx will do resampling inside.sample_rate = 48000samples_per_read = int(0.1 * sample_rate)  # 0.1 second = 100 mslast_result = ""stream = recognizer.create_stream()with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:while True:samples, _ = s.read(samples_per_read)  # a blocking readsamples = samples.reshape(-1)stream.accept_waveform(sample_rate, samples)while recognizer.is_ready(stream):recognizer.decode_stream(stream)result = recognizer.get_result(stream)if last_result != result:last_result = resultprint("\r{}".format(result), end="", flush=True)if __name__ == "__main__":devices = sd.query_devices()print(devices)default_input_device_idx = sd.default.device[0]print(f'Use default device: {devices[default_input_device_idx]["name"]}')try:main()except KeyboardInterrupt:print("\nCaught Ctrl + C. Exiting")
3)离线wav音频文件转录

注意:如果本地音频比特率不是256kps,需要转换;比特率(Bitrate)是指音频或视频文件中每秒的比特数。通常用于表示数据传输速率或压缩率。

对于音频文件,比特率表示每秒音频数据的传输速率,单位是kbps(千比特每秒)。通常,比特率越高,音频数据的质量越好,但文件大小也会增加。

例如,256 kbps意味着每秒音频数据的传输速率为256千比特。这种表示方式通常用于指定音频文件的压缩率或输出质量。

sox a.wav  -r 16k  -c 1  b.wav  

在这里插入图片描述

decode-file.py ##官方代码

#!/usr/bin/env python3"""
This file demonstrates how to use sherpa-ncnn Python API to recognize
a single file.Please refer to
https://k2-fsa.github.io/sherpa/ncnn/index.html
to install sherpa-ncnn and to download the pre-trained models
used in this file.
"""import time
import waveimport numpy as np
import sherpa_ncnndef main():# Please refer to https://k2-fsa.github.io/sherpa/ncnn/index.html# to download the model files# recognizer = sherpa_ncnn.Recognizer(#     tokens="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/tokens.txt",#     encoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.param",#     encoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/encoder_jit_trace-pnnx.ncnn.bin",#     decoder_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.param",#     decoder_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/decoder_jit_trace-pnnx.ncnn.bin",#     joiner_param="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.param",#     joiner_bin="./sherpa-ncnn-conv-emformer-transducer-2022-12-06/joiner_jit_trace-pnnx.ncnn.bin",#     num_threads=4,# )base_file = "sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13"# base_file = "sherpa-ncnn-streaming-zipformer-small-bilingual-zh-en-2023-02-16"# base_file = "sherpa-ncnn-streaming-zipformer-20M-2023-02-17"recognizer = sherpa_ncnn.Recognizer(tokens="./{}/tokens.txt".format(base_file),encoder_param="./{}/encoder_jit_trace-pnnx.ncnn.param".format(base_file),encoder_bin="./{}/encoder_jit_trace-pnnx.ncnn.bin".format(base_file),decoder_param="./{}/decoder_jit_trace-pnnx.ncnn.param".format(base_file),decoder_bin="./{}/decoder_jit_trace-pnnx.ncnn.bin".format(base_file),joiner_param="./{}/joiner_jit_trace-pnnx.ncnn.param".format(base_file),joiner_bin="./{}/joiner_jit_trace-pnnx.ncnn.bin".format(base_file),num_threads=4,)filename = r'D:\sound\loong.wav'with wave.open(filename) as f:# Note: If wave_file_sample_rate is different from# recognizer.sample_rate, we will do resampling inside sherpa-ncnnwave_file_sample_rate = f.getframerate()num_channels = f.getnchannels()assert f.getsampwidth() == 2, f.getsampwidth()  # it is in bytesnum_samples = f.getnframes()samples = f.readframes(num_samples)samples_int16 = np.frombuffer(samples, dtype=np.int16)samples_int16 = samples_int16.reshape(-1, num_channels)[:, 0]samples_float32 = samples_int16.astype(np.float32)samples_float32 = samples_float32 / 32768# simulate streamingchunk_size = int(0.1 * wave_file_sample_rate)  # 0.1 secondsstart = 0while start < samples_float32.shape[0]:end = start + chunk_sizeend = min(end, samples_float32.shape[0])recognizer.accept_waveform(wave_file_sample_rate, samples_float32[start:end])start = endtext = recognizer.textif text:print(text)# simulate streaming by sleepingtime.sleep(0.1)tail_paddings = np.zeros(int(wave_file_sample_rate * 0.5), dtype=np.float32)recognizer.accept_waveform(wave_file_sample_rate, tail_paddings)recognizer.input_finished()text = recognizer.textif text:print(text)if __name__ == "__main__":main()

或者通过ffmpeg离线读取mp4、mav,网络读取rtsp链接,自己整理推荐这份代码

import subprocess
import sounddevice as sd
import numpy as np
from sklearn.preprocessing import MinMaxScalerimport sherpa_ncnndef create_recognizer():# Please replace the model files if needed.# See https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html# for download links.# base_file = "sherpa-ncnn-conv-emformer-transducer-2022-12-06"# base_file = "sherpa-ncnn-lstm-transducer-small-2023-02-13"base_file = r"D:\llm\sherpa*******mples\sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13"# base_file = "sherpa-ncnn-streaming-zipformer-small-bilingual-zh-en-2023-02-16"# base_file = "sherpa-ncnn-streaming-zipformer-20M-2023-02-17"recognizer = sherpa_ncnn.Recognizer(tokens="{}\\tokens.txt".format(base_file),encoder_param="{}\encoder_jit_trace-pnnx.ncnn.param".format(base_file),encoder_bin="{}\encoder_jit_trace-pnnx.ncnn.bin".format(base_file),decoder_param="{}\decoder_jit_trace-pnnx.ncnn.param".format(base_file),decoder_bin="{}\decoder_jit_trace-pnnx.ncnn.bin".format(base_file),joiner_param="{}\joiner_jit_trace-pnnx.ncnn.param".format(base_file),joiner_bin="{}\joiner_jit_trace-pnnx.ncnn.bin".format(base_file),num_threads=4,)return recognizerprint("Started! Please speak")
recognizer = create_recognizer()
# sample_rate = recognizer.sample_rate
# samples_per_read = int(0.1 * sample_rate)  # 0.1 second = 100 ms# 远程RTSP音频流的URL(wav\mp4/rtsp都可以)
# url = "your_rtsp_url"
# url = r'D:\sound\0.wav'
url = r'D:\sound\222.mp4'# FFmpeg命令参数
ffmpeg_cmd = ["ffmpeg","-i", url,"-f", "s16le","-acodec", "pcm_s16le","-ar", "16000","-ac","1","-",]# 创建FFmpeg进程
process = subprocess.Popen(ffmpeg_cmd,stdout=subprocess.PIPE,stderr=subprocess.DEVNULL,bufsize=1600
)# 定义音频流的采样率、通道数和每次读取的样本数量
sample_rate = 16000
channels = 1
frames_per_read = 1600last_result = ""
i=0
# 读取和处理音频数据
while True:# 从FFmpeg进程中读取音频数据data = process.stdout.read(frames_per_read * channels * 2)  # 每个样本16位,乘以2if not data:break# 将音频数据转换为numpy数组samples = np.frombuffer(data, dtype=np.int16)samples = samples.astype(np.float32)# samples = MinMaxScaler(feature_range=(-1, 1)).fit_transform(samples.reshape(-1, 1))samples /= 32768.0  # 归一化到[-1, 1]范围# print(samples.shape, samples)# 处理音频数据# 在这里添加您的音频处理代码recognizer.accept_waveform(sample_rate, samples)result = recognizer.text# print("result:",result,"last_result:",last_result)if last_result != result:if i==0:print("{}".format(result),end='')last_result = resulti=i+1else:last_result_len=len(last_result)new_word = result[last_result_len:]# print(last_result,result,new_word)print("{}".format(new_word),end='', flush=True)last_result = result# 关闭FFmpeg进程
process.stdout.close()
process.terminate()

ffmpeg 实时读取本地麦克风声音

import subprocess
import sounddevice as sd
import numpy as np
from sklearn.preprocessing import MinMaxScalerimport sherpa_ncnndef create_recognizer():# Please replace the model files if needed.# See https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html# for download links.# base_file = "sherpa-ncnn-conv-emformer-transducer-2022-12-06"# base_file = "sherpa-ncnn-lstm-transducer-small-2023-02-13"base_file = r"D:\llm\sherpa-ncnn-master\sherpa-ncnn-master\python-api-examples\sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13"# base_file = "sherpa-ncnn-streaming-zipformer-small-bilingual-zh-en-2023-02-16"# base_file = "sherpa-ncnn-streaming-zipformer-20M-2023-02-17"recognizer = sherpa_ncnn.Recognizer(tokens="{}\\tokens.txt".format(base_file),encoder_param="{}\encoder_jit_trace-pnnx.ncnn.param".format(base_file),encoder_bin="{}\encoder_jit_trace-pnnx.ncnn.bin".format(base_file),decoder_param="{}\decoder_jit_trace-pnnx.ncnn.param".format(base_file),decoder_bin="{}\decoder_jit_trace-pnnx.ncnn.bin".format(base_file),joiner_param="{}\joiner_jit_trace-pnnx.ncnn.param".format(base_file),joiner_bin="{}\joiner_jit_trace-pnnx.ncnn.bin".format(base_file),num_threads=4,)return recognizerprint("Started! Please speak")
recognizer = create_recognizer()
# sample_rate = recognizer.sample_rate
# samples_per_read = int(0.1 * sample_rate)  # 0.1 second = 100 ms# 远程RTSP音频流的URL
# url = "your_rtsp_url"
# url = r'D:\sound\0.wav'
# url = r'D:\sound\222.mp4'
url = "rtsp://admin:jc123456@192.168.63.88/Streaming/Channels/2?tcp"# FFmpeg命令参数
# ffmpeg_cmd = [
#     "ffmpeg",
#     "-i", url,
#     "-f", "s16le",
#     "-acodec", "pcm_s16le",
#     "-ar", "16000",
#     "-ac","1",
#     "-",# ]ffmpeg_cmd = ["ffmpeg","-f", "dshow",  # 使用alsa作为音频输入设备"-i", "audio=麦克风阵列 (适用于数字麦克风的英特尔® 智音技术)",  # 使用默认的音频输入设备(麦克风)"-f", "s16le","-acodec", "pcm_s16le","-ar", "16000","-ac", "1","-"
]# 创建FFmpeg进程
process = subprocess.Popen(ffmpeg_cmd,stdout=subprocess.PIPE,stderr=subprocess.DEVNULL,bufsize=1600
)# 定义音频流的采样率、通道数和每次读取的样本数量
sample_rate = 16000
channels = 1
frames_per_read = 1600last_result = ""
i=0
# 读取和处理音频数据
while True:# 从FFmpeg进程中读取音频数据data = process.stdout.read(frames_per_read * channels * 2)  # 每个样本16位,乘以2if not data:break# 将音频数据转换为numpy数组samples = np.frombuffer(data, dtype=np.int16)samples = samples.astype(np.float32)# samples = MinMaxScaler(feature_range=(-1, 1)).fit_transform(samples.reshape(-1, 1))samples /= 32768.0  # 归一化到[-1, 1]范围# print(samples.shape, samples)# 处理音频数据# 在这里添加您的音频处理代码recognizer.accept_waveform(sample_rate, samples)result = recognizer.text# print("result:",result,"last_result:",last_result)if last_result != result:if i==0:print("{}".format(result),end='')last_result = resulti=i+1else:last_result_len=len(last_result)new_word = result[last_result_len:]# print(last_result,result,new_word)print("{}".format(new_word),end='', flush=True)last_result = result# 关闭FFmpeg进程
process.stdout.close()
process.terminate()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/32158.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

共享硬盘没有权限访问计算机,Win7系统打开磁盘共享说“没有访问权限

在操作win7系统的时候经常会在局域网中共享磁盘&#xff0c;方便其他用户访问共享资料等等&#xff0c;但是有win7用户说自己打开磁盘共享提示说“没有访问权限”&#xff0c;这是怎么回事&#xff1f;针对这个情况&#xff0c;下面小编就给大家讲讲解决的办法吧。 具体方法如下…

linux添加用户到附属组无权访问

目标&#xff1a;首先在root 超级用户权限下创建admin 和test俩个账号&#xff0c;然后用test用户访问admin用户的文件。 Linux创建新用户admin useradd admin passwd admin 为admin用户配置密码&#xff08;root管理员模式下必须指定给那个用户创建密码&#xff09; 同理在创建…

打印机扫描显示服务器拒绝访问,打印机拒绝访问,教您打印机拒绝访问怎么解决...

在办公的时候&#xff0c;很多时候都会使用打印机共享的功能&#xff0c;这样大家打印文件就方便很多了。而打印机的连接经常会出现很多问题&#xff0c;其中windows无法连接到打印机&#xff0c;拒绝访问&#xff0c;最为常见&#xff0c;也最为棘手&#xff0c;下面&#xff…

计算机没有u盘权限,访问u盘提示没有权限怎么解决,u盘无权访问的解决方法

在我们利用u盘从计算机中拷贝文件的时候弹出提示“需要管理员权限”&#xff0c;这是怎么回事呢&#xff1f;访问u盘提示没有权限怎么解决&#xff1f;今天&#xff0c;小编在这就教大家通过u盘属性设置来解决没有访问权限的问题。 具体的设置方法&#xff1a; 1、u盘连接上电脑…

你当前无权访问该文件夹 解决你当前无权访问该文件夹拒绝你访问该文件夹

我 这样就完成了 http://www.xitonghe.com/jiaocheng/windows7-5642.html https://jingyan.baidu.com/article/4b52d702aa01b3fc5c774b1b.html Win10正式版提示你当前无权访问该文件夹怎么办 https://jingyan.baidu.com/article/4b52d702aa01b3fc5c774b1b.html 1407345人看了…

访问ftp服务器不显示文件夹权限问题,访问ftp服务器显示无权限问题

访问ftp服务器显示无权限问题 内容精选 换一换 无法访问httpd文件服务器的下一级目录,提示无权限访问。查看系统中的日志(/etc/httpd/logs/error_log或var/log/httpd/error_log),发现selinux权限处于打开状态,没有权限访问/var/www/html/entry目录;报错日志内容:SELinux p…

打印机共享无法访问该计算机,共享打印机拒绝访问怎么办详细解决方案

在办公室经常要用到打印机&#xff0c;而一般都是大家共用一台打印机&#xff0c;它的连接方式属于共享打印机&#xff0c;而有时候我们会遇到共享打印机拒绝访问&#xff0c;这又是什么原因呢&#xff1f;其实原因很简单&#xff0c;那就是共享的权限问题&#xff0c;我们只需…

kibana设置账号密码 - nginx配置访问权限

kibana设置账号密码 一、背景二、实现修改配置文件主要配置这两项配置登陆用户帐号密码 三、效果如下 一、背景 kibana默认没有访问的权限控制&#xff0c;如果需要设置访问的账号密码&#xff0c;可以使用nginx配置代理来发布kibana。 二、实现 修改配置文件 server {liste…

因为计算机限制无法访问U盘,U盘拒绝访问怎么办解决教程

U盘使用过程中&#xff0c;莫名其妙的问题还是有很多的&#xff0c;其中最奇怪的就是出现U盘拒绝访问的问题&#xff0c;然后就无法打开U盘了&#xff0c;里面的资料也拷贝不出来&#xff0c;对于这种问题怎么办呢&#xff1f;下面就教大家解决。 方法一、排除是U盘问题还是系统…

Linux共享后无权限访问,Samba服务无权限访问

在CentOS上配置Samba服务好几天了,总是出现在Windows资源管理器中无法访问的问题: 开始总以为是我的smbpasswd -a root命令没有将用户加进去,之后添加/删除重复了不知多少次,还是不管用,把linux和Windows的防火墙都关闭了之后,还是不管用,便全面开始samba的服务配置,一步步操作…

win10提示“你当前无权访问该文件夹“的解决方法

今天删除文件夹的时候遇到了“你当前无权访问该文件夹”的提示&#xff0c;选择【继续】没用。 解决方法如下&#xff1a; step 1&#xff1a; 右键该文件夹&#xff0c;选择【属性】。 step 2&#xff1a; 选择【安全】栏——【高级】。 step 3&#xff1a; 【更改】 step 4&…

计算机提示无法访问手机tf卡,SD卡无法访问解决教程

SD卡在使用时间长了以后&#xff0c;出现问题是很常见的情况&#xff0c;而如果sd卡插到手机上或者电脑上显示sd卡无法访问的话&#xff0c;这种情况就比较麻烦了&#xff0c;当然也分情况&#xff0c;如果运气好只是逻辑损坏可以很轻松修复好&#xff0c;如果是物理损坏就希望…

访问控制

访问控制 访问控制基础自主访问控制模型强制访问控制模型基于角色的访问控制模型特权管理基础设施 访问控制基础 ◆理解访问控制的概念、作用及访冋控制模型的概念 访问控制基础 ◆什么是访问控制 ◆为用户对系统资源提供最大限度共享的基础上&#xff0c;对用户的访问权进行管…

您当前无权访问该文件夹

问题&#xff1a; 电脑重新做系统后&#xff0c;双击访问原硬盘上的资料文件夹&#xff0c;弹出对话框&#xff0c;无法访问&#xff0c;点击继续后无效 解决&#xff1a; 1.新建*.txt文件 2.复制粘贴下文到.txt文件中 Windows Registry Editor Version 5.00  [HKEY_CLAS…

Windows10无权访问该文件夹解决办法

我在重新安装操作系统后&#xff0c;有几个旧的文件夹由于参与了共享文件&#xff0c;莫名导致文件夹的用户访问权限错乱&#xff0c;根本原因是文件夹的访问权限无法识别新的系统用户&#xff0c;文件夹出现如下图的提示&#xff1a;“你当前无权访问该文件夹”。 如果右键点击…

win10解决你当前无权访问该文件夹,拒绝你访问该文件夹

问题&#xff1a; win10系统中&#xff0c;有时打开一个文件夹&#xff0c;会提示“你当前无权访问该文件夹”&#xff0c;“拒绝你访问该文件夹”。 解决方法&#xff1a; 首先选中这个文件夹右键属性&#xff0c;在属此处性界面&#xff0c;点击安全页签。 然后进入高级&a…

百度站长平台"添加站点"提示"您无权访问该页面,点击确定按钮返回首页?"

大家在百度站长平台“添加站点”、“抓取诊断”的时候&#xff0c;是否遇到“您无权访问该页面&#xff0c;点击确定按钮返回首页”问题。小编也遇到过这种情况&#xff0c;现在问题已解决&#xff0c;把解决方法免费分享出来。 百度站长平台提示“您无权访问该页面&#xff0c…

你无权访问该计算机,解决“您当前无权访问该文件夹”的问题

在使用Windows 10工作时会遇到形形色色的问题&#xff0c;比如访问文件夹显示“您当前无权访问该文件夹”。那么如何进行故障排除呢&#xff1f;下面小编与你分享具体步骤和方法。 工具/材料 Windows 10操作系统 操作方法 01启动Windows 10操作系统&#xff0c;如图所示。点击任…

无权访问同一网络的共享计算机,局域网共享文件夹无权访问怎么办

局域网共享文件夹无权限访问有很多原因&#xff0c;比如工作组名称不同&#xff0c;设置不正确等&#xff0c;需要逐一排查&#xff0c;下面是学习啦小编整理的局域网共享文件夹无权访问的解决方法&#xff0c;供您参考。 局域网共享文件夹无权访问的解决方法 01要保证联网的各…

对话火山引擎总裁谭待:从同质化的云服务中突围 | 数字思考者50人

▎多云的趋势&#xff0c;对于数据消费场景的重视&#xff0c;再结合抖音电商的火热生态&#xff0c;给了火山引擎在云计算市场发力追赶的强力信心。 作者&#xff5c;杨丽 编辑&#xff5c;刘湘明 本文首发于钛媒体APP 钛媒体特别专题策划《数字思考者50人》&#xff1a;探访中…