【C++历练之路】红黑树——map与set的封装实现

W...Y的个人主页💕

gitee代码仓库分享😊 

 


前言:上篇博客中,我们为了使二叉搜索树不会出现”一边倒“的情况,使用了AVL树对搜索树进行了处理,从而解决了数据在有序或者接近有序时出现的情况。但是AVL树还会有一大缺陷就是其性能的原因,当我们在使其满足AVL树的规则时,其付出的旋转代价是非常大的,所以经常修改的结构就不适合AVL树。但是红黑树就可以补足AVL树的缺陷。

目录

1. 红黑树

1.1 红黑树的概念

1.2 红黑树的性质 

 1.3红黑树节点的定义

 1.4红黑树的插入

1.5 红黑树与AVL树的比较 

2. 红黑树模拟实现STL中的map与set

2.1 红黑树的迭代器

2.2 红黑树的改写与迭代器完整代码

2.3 map的封装

2.4 set的封装


1. 红黑树

1.1 红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或
Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路
径会比其他路径长出俩倍,因而是接近平衡的。

假设最短路径为h,则最长路径为2h。 

1.2 红黑树的性质 

1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点必须是黑色的
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

为什么满足上述性质,红黑树就可以保证其最长路径的节点树不会超过最短路径的两倍呢?  

 前两个性质非常通俗易懂,我们从第三个性质开始解读:

3.没有连续的两个红色节点。

4.每条路径的黑色节点数是相同的。

所以我们就可以假设一颗红黑树中每条路径有两个黑色节点(满足性质4),那最短路径只可能是全黑节点,最长路径一定是一黑一红节点(假设最短路径与最长路径都存在),那么红色节点只能在黑色节点中间插入,这样才能满足性质3,所以红黑树就可以保证其最长路径的节点树不会超过最短路径的两倍。

对比AVL树与红黑树的结构,其AVL树的高度近似logN,而红黑树的高度近似2logN,所以相对于AVL树,红黑树的搜索效率差一些,但是几乎可以忽略不计,因为logN足够小,所以他们之间的搜索差距微乎其微。

 1.3红黑树节点的定义

enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv),_col(RED){}
};

在节点定义时我们默认将节点设置成红色节点,这样如果出现连续的红色节点时,我们可以进行变色操作,通过维护一个子树来使红黑树合法,但是如果插入一个黑色节点时,我们就无法下手,因为每条路的黑色节点数必须相同,这样我们无法很好的进行操作使其合法化。 

 1.4红黑树的插入

 红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

1. 按照二叉搜索的树规则插入新节点:

class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv); // 红色的if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;
}
private:Node* _root = nullptr;
};

2. 检测新节点插入后,红黑树的性质是否造到破坏:
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何
性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连
在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点 

 情况一: cur为红,p为红,g为黑,u存在且为红

解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。 

情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑

 如果u存在且为黑, 则cur一定不是新增节点,因为这样就不满足性质4:每条路径黑色节点个数相同。所以我们将上面图补充完整就是下图所示,先是由情况一进行调整,然后向上调整后才得到上图。所以情况一向上调整后的情况不一定又是情况一!!

这时我们就无法用情况一的做法进行调整, 如果继续用情况一法则已经违反规则了。左右极度不均衡只能进行选择,这时我们就可以类比使用AVL树中的旋转法则。(旋转+变色)

p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色--p变黑,g变红

在变色时我们不区分其p与u节点的左右,但是在旋转时我们就要进行区分。

情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑 

 这种情况并不是一边高,而是两边都高左边高右边也高。所以我们得使用左右/右左双旋转。

p为g的左孩子,cur为p的右孩子,左右双旋+变色

p为g的右孩子,cur为p的左孩子,右左双旋+变色

针对每种情况进行相应的处理即可。

bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv); // 红色的if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色if (cur == parent->_left){//       g//    p    u// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//       g//    p     u//      cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;} }else{Node* uncle = grandfather->_left;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateL(Node* parent){++rotateSize;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}}void RotateR(Node* parent){++rotateSize;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}

1.5 红黑树与AVL树的比较 

 红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O($log_2 N$),红黑树不追
求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,
所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红
黑树更多。

2. 红黑树模拟实现STL中的map与set

我们模拟实现了红黑树,接下来就是对map与set的封装。

我们通过观察其stl源码切入进行仿写:

 我们发现无论是map还是set都复用的一个红黑树,模板参数都是k,v模型。通过源码我们可以发现:set<k> -> rb_tree<k,k> map<k,v> ->rb_tree<k,pair<const k,v>>。所以节点中存什么内容是由v决定的,不是k决定的。将红黑树写成泛型,所以我们必须将上面写的红黑树的模板进行修改!

进行封装后就可以解决复用红黑树的模板。 

 但是使用红黑树的模板时,set和map所比较的对象不一样,因为set比较的就是key,而map比较的是value,所以我们就得使用仿函数进行操作,我们创建keyoft仿函数取出T对象中的key即可。

//set
struct SetKeyOfT{const K& operator()(const K& key){return key;}};//map
struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};

2.1 红黑树的迭代器

首先我们得封装一个红黑树的迭代器用来实现++、--、*、->、!=。这里的迭代器与list的迭代器非常类似,可以用一个指针来实现其内容。但是++与--必须确定下一个与上一个节点的关系,这里我们可以使用中序遍历解决,但是得用一个栈来辅助,这里我们不想使用这样的方法,我们可以找规律来实现:

++逻辑

1.it指向节点,右不为空,下一个就是右子树的最左节点

2.it指向节点,右为空,意味着这个节点的子树中序访问完了,下一个节点找祖先里面的孩子==父亲左的那个祖先。

--逻辑与++相反!

这样迭代器就很好解决了:

template<class T>
struct RBTreeIterator
{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T> Self;Node* _node;RBTreeIterator(Node* node):_node(node){}T& operator*(){return _node->_data;}T* operator->(){return &_node->_data;}Self& operator++(){if (_node->_right){// 右子树的中序第一个(最左节点)Node* subLeft = _node->_right;while (subLeft->_left){subLeft = subLeft->_left;}_node = subLeft;}else{// 祖先里面孩子是父亲左的那个Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}Self& operator--(){// return *this;}bool operator!=(const Self& s){return _node != s._node;}bool operato == (const Self & s){return _node == s._node;}
};

迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代
器,需要考虑以前问题:

begin()与end()
STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后,
可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位
置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪块?
能否给成nullptr呢?答案是行不通的,因为对end()位置的迭代器进行--操作,必须要能找最
后一个元素,此处就不行,因此最好的方式是将end()放在头结点的位置: 

typedef RBTreeIterator<T> iterator;iterator begin()
{Node* subLeft = _root;while (subLeft && subLeft->_left){subLeft = subLeft->_left;}return iterator(subLeft);
}iterator end()
{return iterator(nullptr);
}
//map
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;
iterator begin()
{return _t.begin();
}iterator end()
{return _t.end();
}bool insert(const pair<K, V>& kv)
{return _t.Insert(kv);
}
//settypedef typename RBTree<K, const K, SetKeyOfT>::iterator iterator;iterator begin()
{return _t.begin();
}iterator end()
{return _t.end();
}bool insert(const K& key)
{return _t.Insert(key);
}

2.2 红黑树的改写与迭代器完整代码

#pragma once
#include<vector>enum Colour
{RED,BLACK
};template<class T>
struct RBTreeNode
{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Colour _col;T _data;RBTreeNode(const T& data):_left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _col(RED){}
};template<class T>
struct RBTreeIterator
{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T> Self;Node* _node;RBTreeIterator(Node* node):_node(node){}T& operator*(){return _node->_data;}T* operator->(){return &_node->_data;}Self& operator++(){if (_node->_right){// 右子树的中序第一个(最左节点)Node* subLeft = _node->_right;while (subLeft->_left){subLeft = subLeft->_left;}_node = subLeft;}else{// 祖先里面孩子是父亲左的那个Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}Self& operator--(){// return *this;}bool operator!=(const Self& s){return _node != s._node;}bool operato == (const Self & s){return _node == s._node;}
};// set->RBTree<K, K, SetKeyOfT>
// map->RBTree<K, pair<K, V>, MapKeyOfT>// KeyOfT仿函数 取出T对象中的key
template<class K, class T, class KeyOfT>
class RBTree
{typedef RBTreeNode<T> Node;
public:typedef RBTreeIterator<T> iterator;iterator begin(){Node* subLeft = _root;while (subLeft && subLeft->_left){subLeft = subLeft->_left;}return iterator(subLeft);}iterator end(){return iterator(nullptr);}bool Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return true;}KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(data); // 红色的if (kot(parent->_data) < kot(data)){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色if (cur == parent->_left){//       g//    p    u// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//       g//    p     u//      cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{Node* uncle = grandfather->_left;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}}private:Node* _root = nullptr;
};

2.3 map的封装

namespace why
{template<class K, class V>class map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}bool insert(const pair<K, V>& kv){return _t.Insert(kv);}private:RBTree<K, pair<const K, V>, MapKeyOfT> _t;};
}

2.4 set的封装

#include"RBTree.h"
namespace why
{template<class K>class set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:typedef typename RBTree<K, const K, SetKeyOfT>::iterator iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}bool insert(const K& key){return _t.Insert(key);}private:RBTree<K, const K, SetKeyOfT> _t;};
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/321814.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Isaac Sim 3(学习笔记5.8)

Isaac Sim 利用深度学习获取mask掩码图 参考内容 Kubernetes官网 在 Linux 系统中安装并设置 kubectl | Kubernetes准备开始 kubectl 版本和集群版本之间的差异必须在一个小版本号内。 例如&#xff1a;v1.30 版本的客户端能与 v1.29、 v1.30 和 v1.31 版本的控制面通信。 用…

风与水如何联合优化?基于混合遗传算法的风-水联合优化运行程序代码!

前言 为提高风电场的供电质量同时增加其发电效益,利用储能技术为风电场配置一个蓄能系统是比较重要的解决措施之一。风电的蓄能技术有水力蓄能、压缩空气蓄能、超导磁力蓄能、流体电池组、电解水制氢等&#xff0c;其中水力蓄能是技术较成熟的一种蓄能方式&#xff0c;且小型的…

【JavaEE初阶系列】——Servlet运行原理以及Servlet API详解

目录 &#x1f6a9;Servlet运行原理 &#x1f6a9;Servlet API 详解 &#x1f393;HttpServlet核心方法 &#x1f393;HttpServletRequest核心方法 &#x1f388;核心方法的使用 &#x1f534;获取请求中的参数 &#x1f4bb;query string &#x1f4bb;直接通过form表…

【Cpp】运算符重载 | 前置++(--)# 后置++(--)

标题&#xff1a;【Cpp】运算符重载 | 前置&#xff08;--&#xff09;# 后置&#xff08;--&#xff09; 水墨不写bug 正文开始&#xff1a; 对于内置类型的前置后置&#xff08;--&#xff09;我们已经很清楚了&#xff1a; 前置&#xff08;--&#xff09;先&#xff08;--…

记录一个RSA加密js逆向

network调试就不说了吧 pwd加密参数 搜索pwd参数定位逆向 可以看到有很多关键词 但是我们细心的朋友会发现加密函数关键字 encrypte 打上断点 调试 发现在断点处停止了 并且框选函数发现了一串加密值 虽然不一样但是大概率是这个 并且没你每次放置移开都会刷新 所以如果这个就是…

js自定义实现类似锚点(内容部分滚动)

场景&#xff1a; 效果图如上&#xff0c;类似锚点&#xff0c;但是屏幕不滚动。高度计算我不是很熟练。for循环写的比较麻烦。element plus 和Ant Design有类似组件效果。 html&#xff1a; <template><div><div style"height: 400px;" class&q…

数据丢失不慌张,手机数据恢复一键解决!

如今手机已经成为我们生活中不可或缺的一部分。无论是工作、学习还是娱乐&#xff0c;手机都扮演着重要的角色。随着使用时间的增加&#xff0c;手机数据丢失的问题也时常发生。那么手机数据恢复有哪些方法呢&#xff1f;面对这种情况&#xff0c;先不要慌张&#xff0c;本文将…

STEP BY STEP带你使用Docker搭建MySql-MGR高可用集群

数据的重要性 数据已成为当今数字时代最重要的资产之一&#xff0c;对于企业的成功至关重要。它可以帮助企业了解客户、市场和自身运营&#xff0c;提高运营效率&#xff0c;做出明智决策&#xff0c;推动创新&#xff0c;并获得竞争优势。 数据的采集&#xff0c;存储&#…

Python运维-文本处理、系统和文件信息监控、外部命令

本节主要目录如下&#xff1a; 一、文本处理 1.1、Python编码解码 1.2、文件操作 1.3、读写配置文件 1.4、解析XML文件 二、系统信息监控 2.1、监控CPU信息 2.2、监控内存信息 2.3、监控磁盘信息 2.4、监控网络信息 2.5、获取进程信息 2.6、实例&#xff1a;常见的…

报表控件Stimulsoft在JavaScript报告工具中的事件:查看器事件(下)

Stimulsoft Ultimate &#xff08;原Stimulsoft Reports.Ultimate&#xff09;是用于创建报表和仪表板的通用工具集。该产品包括用于WinForms、ASP.NET、.NET Core、JavaScript、WPF、PHP、Java和其他环境的完整工具集。无需比较产品功能&#xff0c;Stimulsoft Ultimate包含了…

PCIE协议-1

1. PCIe结构拓扑 一个结构由点对点的链路组成&#xff0c;这些链路将一组组件互相连接 - 图1-2展示了一个结构拓扑示例。该图展示了一个称为层级结构的单一结构实例&#xff0c;由一个根复合体&#xff08;Root Complex, RC&#xff09;、多个端点&#xff08;I/O设备&#xf…

Amazon Bedrock 托管 Llama 3 8B70B

Amazon Bedrock 托管 Llama 3 8B&70B&#xff0c;先来体验&#xff1a;&#xff08;*实验环境账号有效期为1天&#xff0c;到期自动关停&#xff0c;请注意重要数据保护&#xff09; https://dev.amazoncloud.cn/experience/cloudlab?id65fd86c7ca2a0d291be26068&visi…

iOS与android坐标映射不一致问题

iOS与android坐标映射不一致问题 背景背景 为什么同一份着色器代码、同样的cvmat数据,Android和iOS两个平台处理之后会得到不一样的结果呢? 这主要是因为iOS和Android使用的渲染图形库不一样,iOS使用的是Metal,而Android使用的是OpenGL ES,而两个图形库的纹理坐标系又不一…

『51单片机』AT24C02[IIC总线]

存储器的介绍 ⒈ROM的功能⇢ROM的数据在程序运行的时候是不容改变的&#xff0c;除非你再次烧写程序&#xff0c;他就会改变&#xff0c;就像我们的书本&#xff0c;印上去就改不了了&#xff0c;除非再次印刷&#xff0c;这个就是ROM的原理。 注→在后面发展的ROM是可以可写可…

【ITK配准】第七期 尺度(Metric)- 均方Metric

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 公众号:VTK忠粉 前言 本文分享ITK中的均方Metric,即itk::MeanSquaresImageToImageMetricv4,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力…

54.HarmonyOS鸿蒙系统 App(ArkTS)tcp socket套接字网络连接收发测试

工程代码https://download.csdn.net/download/txwtech/89258409?spm1001.2014.3001.5501 54.HarmonyOS鸿蒙系统 App(ArkTS)tcp socket套接字网络连接收发测试 import socket from ohos.net.socket; import process from ohos.process; import wifiManager from ohos.wifiMana…

网络基础(1)详解

目录 1.计算机网络背景 2.网络协议 3.网络中的地址管理 1.计算机网络背景 1.1 网络发展 (1)计算机从独立模式到网络互联(多态计算机连接共享数据)再到局域网LAN(通过交换机和路由器连接)接着是广域网WAN 1.2 协议 协议就是双方的一种约定. 为什么要有协议? 因为在数据长距…

Python专题:一、安装步骤

1、下载地址&#xff1a;Welcome to Python.org 勾选这个add 其他的全部下一步即可。 运行出现这个即代表安装成功。 Python自带编辑器。 2、推荐使用的sublime 编辑器下载 全部下一步安装。

苹果可能将OpenAI技术集成至iOS/iPadOS 18

&#x1f989; AI新闻 &#x1f680; 苹果可能将OpenAI技术集成至iOS/iPadOS 18 摘要&#xff1a;苹果正在与OpenAI就将GPT技术部署在iOS/iPadOS 18中进行谈判。这项技术被视为可能增强的Siri功能&#xff0c;即“AI聊天机器人”。除Siri外&#xff0c;新技术还可能改善Spotl…

直播产品实习生实习体验报告,笔灵AI生成模版分享

实习体验报告&#xff1a;直播产品实习生 如果有不同的岗位需要写的话可以去笔灵生成一下 网址&#xff1a;https://ibiling.cn/scene/inex?fromcsdnsx 一、实习背景我是XXX&#xff0c;作为一名直播产品实习生&#xff0c;我在XX公司进行了为期X个月的实习。在这段时间里&…