数据结构的堆(c语言版)

一.堆的概念

1.堆的基本概念

在计算机科学中,堆是一种特殊的数据结构,通常用于实现优先队列和动态分配内存。

2.堆的特征

堆是一个完全二叉树,它具有以下两个主要特性:

  1. 堆序性:对于最大堆,在堆中的任意节点i,其父节点的值大于等于节点i的值;对于最小堆,在堆中的任意节点i,其父节点的值小于等于节点i的值。这意味着在最大堆中,根节点是堆中最大的元素;在最小堆中,根节点是堆中最小的元素。

  2. 完全二叉树性质:除了最底层外,堆的其他层都是满的,并且最底层的节点集中在左侧。

3.堆的性质

根据堆序性质,我们可以高效地找到堆中的最大(最小)元素。这使得堆非常适用于解决一些需要高效获取最大(最小)元素的问题,例如优先队列和排序算法(如堆排序)。

堆可以用数组来实现,其中父节点和子节点之间的关系可以通过索引计算得出。通常,堆的插入和删除操作会触发堆的调整,以维持堆序性质。

需要注意的是,堆和操作系统中的堆内存分配是不同的概念。在操作系统中,堆内存指的是动态分配的内存区域,而在数据结构中,堆是一种数据结构。

4.堆的优缺点

优点:

  1. 高效的插入和删除操作:在堆中,插入和删除元素的时间复杂度为O(log n),其中n是堆中元素的个数。这是由于堆的调整过程只需要对树的高度进行操作,堆的高度通常比较小。

  2. 快速获取最大(最小)元素:在最大堆中,根节点是堆中的最大元素;在最小堆中,根节点是堆中的最小元素。因此,可以在O(1)的时间复杂度内获取最大(最小)元素。

  3. 实现优先队列:堆常用于实现优先队列,其中元素按照优先级进行排序。优先队列可以在O(1)的时间复杂度内获取最高优先级的元素,并且在O(log n)的时间复杂度内插入和删除元素。

缺点:

  1. 不支持快速查找:堆并不提供快速查找指定元素的功能。如果需要在堆中进行查找操作,时间复杂度为O(n),需要遍历整个堆。

  2. 内存空间的浪费:堆使用数组来存储元素,如果事先不知道元素的个数,需要预分配一个较大的数组空间。这可能会导致内存空间的浪费。

  3. 不稳定性:堆排序算法是一种不稳定的排序算法。在排序过程中,相等元素的相对顺序可能会改变。

二.堆的功能

  1. 插入元素:向堆中插入一个新元素。插入操作会根据堆的特性进行调整,以保持堆的性质。

  2. 删除最大(最小)元素:从堆中删除并返回最大(最小)元素。删除操作会将堆的最后一个元素移到堆顶,并根据堆的特性进行调整,以保持堆的性质。

  3. 获取最大(最小)元素:返回堆中的最大(最小)元素,而不删除它。获取操作只是简单地返回堆的根节点的值。

  4. 堆排序:使用堆进行排序。堆排序是一种基于堆的排序算法,它利用堆的性质进行排序操作。

  5. 构建堆:将一个无序的数组转换为一个堆。构建堆的过程会进行堆调整,以满足堆的性质。

  6. 堆化:对一个已有的堆进行调整,以满足堆的性质。堆化可以通过自上而下或自下而上的方式进行。

  7. 堆的合并:将两个堆合并为一个堆。堆的合并操作通常用于合并多个优先队列。

  8. 查找元素:在堆中查找指定元素。由于堆并不提供快速查找功能,查找操作需要遍历整个堆,时间复杂度为O(n)。

三.堆的代码实现

1.堆的定义

创建一个结构体,其中成员如下:

  • array:一个指向整型数组的指针,用于存储堆中的元素。
  • capacity:一个整数,表示堆的容量,即 array 数组的最大长度。
  • size:一个整数,表示当前堆中的元素个数,即 array 数组中实际存储的元素数量。
typedef struct {int* array;     // 存储堆元素的数组int capacity;   // 堆的容量int size;       // 堆中当前元素的个数
} Heap;

2.创建堆

创建堆。该函数接受一个整数参数 capacity,表示堆的容量。它会分配堆所需的内存,并返回指向堆结构的指针。

// 创建堆
Heap* createHeap(int capacity) {Heap* heap = (Heap*)malloc(sizeof(Heap));heap->array = (int*)malloc(sizeof(int) * capacity);heap->capacity = capacity;heap->size = 0;return heap;
}

3.交换两个数值

交换两个元素的值。该函数接受两个整型指针作为参数,通过引用交换指针所指向的两个整数的值。

// 交换两个元素
void swap(int* a, int* b) {int temp = *a;*a = *b;*b = temp;
}

4.入堆

向堆中插入元素。该函数接受一个指向堆结构的指针 heap 和要插入的整数值 value。它将元素插入到堆的最后位置,并通过自上而下的调整操作,保持堆的性质。

// 向堆中插入元素
void insert(Heap* heap, int value) {if (heap->size == heap->capacity) {printf("堆已满,无法插入新元素。\n");return;}// 将新元素插入到堆的最后位置heap->array[heap->size] = value;int currentIndex = heap->size;int parentIndex = (currentIndex - 1) / 2;// 自下而上调整堆结构while (currentIndex > 0 && heap->array[currentIndex] > heap->array[parentIndex]) {swap(&heap->array[currentIndex], &heap->array[parentIndex]);currentIndex = parentIndex;parentIndex = (currentIndex - 1) / 2;}heap->size++;
}

5.出堆

从堆中删除并返回最大元素。该函数接受一个指向堆结构的指针 heap。它将堆顶元素(最大元素)删除,并将最后一个元素移到堆顶,然后通过自上而下的调整操作,保持堆的性质。

// 从堆中删除并返回最大元素
int deleteMax(Heap* heap) {if (heap->size == 0) {printf("堆为空,无法删除元素。\n");return -1;}int maxValue = heap->array[0];// 将最后一个元素移到堆顶heap->array[0] = heap->array[heap->size - 1];heap->size--;int currentIndex = 0;int leftChildIndex = 2 * currentIndex + 1;int rightChildIndex = 2 * currentIndex + 2;// 自上而下调整堆结构while (1) {int maxIndex = currentIndex;// 与左子节点比较if (leftChildIndex < heap->size && heap->array[leftChildIndex] > heap->array[maxIndex]) {maxIndex = leftChildIndex;}// 与右子节点比较if (rightChildIndex < heap->size && heap->array[rightChildIndex] > heap->array[maxIndex]) {maxIndex = rightChildIndex;}// 如果当前节点已经是最大值,则堆已调整完毕if (maxIndex == currentIndex) {break;}// 否则,交换当前节点与最大子节点的位置swap(&heap->array[currentIndex], &heap->array[maxIndex]);currentIndex = maxIndex;leftChildIndex = 2 * currentIndex + 1;rightChildIndex = 2 * currentIndex + 2;}return maxValue;
}

6.打印堆

打印堆元素。该函数接受一个指向堆结构的指针 heap。它会遍历堆中的元素,并将它们打印出来。

// 打印堆元素
void printHeap(Heap* heap) {printf("堆元素:");for (int i = 0; i < heap->size; i++) {printf("%d ", heap->array[i]);}printf("\n");
}

7.销毁堆

释放堆内存。该函数接受一个指向堆结构的指针 heap。它会释放堆所占用的内存,防止内存泄漏。

// 释放堆内存
void destroyHeap(Heap* heap) {free(heap->array);free(heap);
}

四.堆的源码呈现

#include <stdio.h>
#include <stdlib.h>// 定义堆结构
typedef struct {int* array;     // 存储堆元素的数组int capacity;   // 堆的容量int size;       // 堆中当前元素的个数
} Heap;// 创建堆
Heap* createHeap(int capacity) {Heap* heap = (Heap*)malloc(sizeof(Heap));heap->array = (int*)malloc(sizeof(int) * capacity);heap->capacity = capacity;heap->size = 0;return heap;
}// 交换两个元素
void swap(int* a, int* b) {int temp = *a;*a = *b;*b = temp;
}// 向堆中插入元素
void insert(Heap* heap, int value) {if (heap->size == heap->capacity) {printf("堆已满,无法插入新元素。\n");return;}// 将新元素插入到堆的最后位置heap->array[heap->size] = value;int currentIndex = heap->size;int parentIndex = (currentIndex - 1) / 2;// 自下而上调整堆结构while (currentIndex > 0 && heap->array[currentIndex] > heap->array[parentIndex]) {swap(&heap->array[currentIndex], &heap->array[parentIndex]);currentIndex = parentIndex;parentIndex = (currentIndex - 1) / 2;}heap->size++;
}// 从堆中删除并返回最大元素
int deleteMax(Heap* heap) {if (heap->size == 0) {printf("堆为空,无法删除元素。\n");return -1;}int maxValue = heap->array[0];// 将最后一个元素移到堆顶heap->array[0] = heap->array[heap->size - 1];heap->size--;int currentIndex = 0;int leftChildIndex = 2 * currentIndex + 1;int rightChildIndex = 2 * currentIndex + 2;// 自上而下调整堆结构while (1) {int maxIndex = currentIndex;// 与左子节点比较if (leftChildIndex < heap->size && heap->array[leftChildIndex] > heap->array[maxIndex]) {maxIndex = leftChildIndex;}// 与右子节点比较if (rightChildIndex < heap->size && heap->array[rightChildIndex] > heap->array[maxIndex]) {maxIndex = rightChildIndex;}// 如果当前节点已经是最大值,则堆已调整完毕if (maxIndex == currentIndex) {break;}// 否则,交换当前节点与最大子节点的位置swap(&heap->array[currentIndex], &heap->array[maxIndex]);currentIndex = maxIndex;leftChildIndex = 2 * currentIndex + 1;rightChildIndex = 2 * currentIndex + 2;}return maxValue;
}// 打印堆元素
void printHeap(Heap* heap) {printf("堆元素:");for (int i = 0; i < heap->size; i++) {printf("%d ", heap->array[i]);}printf("\n");
}// 释放堆内存
void destroyHeap(Heap* heap) {free(heap->array);free(heap);
}int main() {Heap* heap = createHeap(10);insert(heap, 5);insert(heap, 8);insert(heap, 2);insert(heap, 10);insert(heap, 3);printHeap(heap);int max = deleteMax(heap);printf("删除的最大元素:%d\n", max);printHeap(heap);destroyHeap(heap);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/322958.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

wpf转换器

WPF&#xff08;Windows Presentation Foundation&#xff09;中的转换器主要是指IValueConverter接口的实现&#xff0c;它用于在数据绑定过程中转换源数据和目标数据的类型或表示形式。这种机制使得开发者能够灵活地处理数据&#xff0c;特别是在用户界面&#xff08;UI&…

VMP 简单源码分析(.net)

虚拟机 获取CPU的型号 实现了一个指令集解释器&#xff0c;每个操作码对应一个特定的处理函数&#xff0c;用于执行相应的指令操作。在执行字节码时&#xff0c;解释器会根据操作码查找并调用相应的处理函数来执行指令。 截获异常 先由虚拟机处理 处理不了再抛出异常 priva…

基于Springboot的校园疫情防控系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的校园疫情防控系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…

【可实战】被测需求理解(需求文档是啥样的、从哪些角度进行需求评审、需求分析需要分析出哪些内容、如何提高需求分析能力)

产品人员会产出一个需求文档&#xff0c;然后组织一个需求的宣讲。测试人员的任务就是在需求宣讲当中&#xff0c;分析需求有没有存在一些问题&#xff0c;然后在需求宣讲结束之后通过分析需求文档&#xff0c;分析里面的测试点并预估一个排期。 一、需求文档是什么样的&#x…

我独自升级崛起怎么下载 游戏下载教程分享

《我独自升级&#xff1a;崛起》这款游戏核心聚焦于激烈的战斗与角色的持续成长。新加入的玩家首要任务是熟悉基础攻击模式&#xff0c;随后深入探索技能组合策略与连贯招式的艺术&#xff0c;同时掌握防守与躲避技巧&#xff0c;这些都是战斗中不可或缺的关键。随着战斗的持续…

python turtle 升国旗

​一、导语 大家好,前段时间,我们画出了五星红旗,今天我们要用Python的Turtle库来绘制一个五星红旗,并让国旗上升,让我们一起来感受编程与艺术的完美结合吧!领略国家的强大!爱祖国,做一个遵纪守法的好公民。 二、效果展示 升国旗 三、开发过程 一、准备工作 首先我们…

ICode国际青少年编程竞赛- Python-2级训练场-坐标与列表练习

ICode国际青少年编程竞赛- Python-2级训练场-坐标与列表练习 1、 for i in range(6):Spaceship.step(Item[i].x - Spaceship.x)Dev.step(Item[i].y - Dev.y)Dev.step(Spaceship.y - Dev.y)2、 for i in range(5):Spaceship.step(Item[i].x - Spaceship.x)Flyer[i].step(Item[…

7.基于麻雀搜索算法(SSA)优化VMD参数(SSA-VMD)

01.智能优化算法优化VMD参数的使用说明 02.基本原理 麻雀搜索算法&#xff08;SSA&#xff09;是一种基于鸟类觅食行为的启发式优化算法&#xff0c;它模拟了麻雀在觅食时的群体行为&#xff0c;通过模拟麻雀的觅食过程来寻找问题的最优解。SSA的基本原理是通过模拟麻雀的搜索…

PyCharm 2024新版图文安装教程(python环境搭建+PyCharm安装+运行测试+汉化+背景图设置)

名人说&#xff1a;一点浩然气&#xff0c;千里快哉风。—— 苏轼《水调歌头》 创作者&#xff1a;Code_流苏(CSDN) 目录 一、Python环境搭建二、PyCharm下载及安装三、解释器配置及项目测试四、PyCharm汉化五、背景图设置 很高兴你打开了这篇博客&#xff0c;如有疑问&#x…

已经有 Prometheus 了,还需要夜莺?

谈起当下监控&#xff0c;Prometheus 无疑是最火的项目&#xff0c;如果只是监控机器、网络设备&#xff0c;Zabbix 尚可一战&#xff0c;如果既要监控设备又要监控应用程序、Kubernetes 等基础设施&#xff0c;Prometheus 就是最佳选择。甚至有些开源项目&#xff0c;已经内置…

【用文本生成歌声】Learn2Sing 2.0——歌声转换算法即梅尔频谱详解

一. 频谱图与梅尔谱图的介绍 频谱图&#xff1a;频谱图可以理解为一堆垂直堆叠在一起的快速傅里叶变换结果。 1.1 信号 在进入频谱图模块之前&#xff0c;首先我们需要了解信号是什么。 信号就是某一特定量随时间变化&#xff0c;对于音频来说&#xff0c;这个特定的变化量就…

搜维尔科技:OptiTrack是基于LED墙虚拟制作舞台的最佳选择

OptiTrack因其绝对精度、易用性、可靠性以及与现场工具的完美集成而被选中&#xff0c;仍然是全球首屈一指的基于 LED 墙的虚拟制作舞台的选择。 当今虚拟制作阶段的低延迟、超精确摄像机跟踪标准 /- 0.2 毫米 位置精度1 < 10 毫秒 系统延迟 /- 0.1 度 旋转精度2 电影…

流畅的python-学习笔记_符合python风格的对象

对象表示形式 查看对象说明&#xff0c;可以通过__repr__和__str__方法&#xff0c;前者主要用于开发者&#xff0c;后者主要用于用户&#xff0c;这两个方法分别对内置函数repr和str函数提供支持 向量类 备选构造方法 classmethod和staticmethod staticmethod用的不是特别…

加速科技突破2.7G高速数据接口测试技术

随着显示面板分辨率的不断提升&#xff0c;显示驱动芯片&#xff08;DDIC&#xff09;的数据接口传输速率越来越高&#xff0c;MIPI、LVDS/mLVDS、HDMI等高速数据接口在DDIC上广泛应用。为满足高速数据接口的ATE测试需求&#xff0c;作为国内少数拥有完全自研的LCD Driver测试解…

深入剖析Tomcat(六) Tomcat各组件的生命周期控制

Catalina中有很多组件&#xff0c;像上一章提到的四种容器&#xff0c;载入器&#xff0c;映射器等都是一种组件。每个组件在对外提供服务之前都需要有个启动过程&#xff1b;组件在销毁之前&#xff0c;也需要有个关闭过程&#xff1b;例如servlet容器关闭时&#xff0c;需要调…

红米1s 刷入魔趣 (Mokee)ROM(Android 7.1)

目录 背景准备工具硬件&#xff08;自己准备&#xff09;软件&#xff08;我会在文末提供链接&#xff09; 刷机步骤1. 重启电脑2. 安装驱动3. 刷入TWRP4. 清空数据5. 刷入魔趣6. 开机 结尾下载链接 本文由Jzwalliser原创&#xff0c;发布在CSDN平台上&#xff0c;遵循CC 4.0 B…

汇集全球顶级AI的自助平台

1、介绍:此平台以其开放和便捷的特性,为用户提供了一个无需月费的 AI 服务入口。咱可以根据自己的需求,灵活选择和付费使用平台上的 AI 技术。 该平台强调的核心优势在于 “零门槛” 和 “按需付费”,意味着用户不需要进行大额预付或者承担长期的固定费用,而是可以根据实际…

Kubernetes的基本概念

目录 一.基本内容 1.定义 2.作用 二.特性 1.弹性伸缩 2.自我修复 3.服务发现和负载均衡 4.自动发布&#xff08;默认滚动发布模式&#xff09;和回滚 5.集中化配置管理和密钥管理 6.存储编排&#xff0c;支持外挂存储并对外挂存储资源进行编排 7.任务批处理运行 三…

【go项目01_学习记录08】

学习记录 1 模板文件1.1 articlesStoreHandler() 使用模板文件1.2 统一模板 1 模板文件 重构 articlesCreateHandler() 和 articlesStoreHandler() 函数&#xff0c;将 HTML 抽离并放置于独立的模板文件中。 1.1 articlesStoreHandler() 使用模板文件 . . . func articlesSt…

UE5 audio capture 回声问题 ||在安卓上有爆鸣声

参考视频 0.基本步骤 【UE4_蓝图】录制麦克风声音/系统声音并输出保存WAV文件_ue4录音-CSDN博客 1.步骤 1.创建Sound Submix A 2. 右键新建Sound Submix B 3.把B的两个参数调为-96 4.audio capture的Base Submix&#xff0c;把前面提到的A赋值进去 5.开始录制输出和完成录制…