深度学习中的注意力机制一(Pytorch 15)

一 简介

灵长类动物的视觉系统接受了大量的感官输入,这些感官输入远远超过了大脑能够完全处理的程度。然而, 并非所有刺激的影响都是相等的。意识的聚集和专注使灵长类动物能够在复杂的视觉环境中将注意力引向感 兴趣的物体,例如猎物和天敌。只关注一小部分信息的能力对进化更加有意义,使人类得以生存和成功。

自19世纪以来,科学家们一直致力于研究认知神经科学领域的注意力。首先回顾一个经典注意力框架,解释如何在视觉场景中展开注意力。受此框架中的 注意力提示(attention cues) 的启发,我们将设计能够利用这些注意力提示的模型。1964年的Nadaraya‐Waston核回归(kernel regression) 正是具有注意力机制(attention mechanism)的机器学习的简单演示。

然后继续介绍的是 注意力函数,它们在深度学习的注意力模型设计中被广泛使用。具体来说,我们将展示如何使用这些函数来设计Bahdanau注意力。Bahdanau注意力是深度学习中的具有突破性价值的注意力模型,它双向对齐并且可以微分。

最后将描述仅仅基于注意力机制的 Transformer架构,该架构中使用了 多头注意力(multi‐head attention)和 自注意力(self‐attention)。自2017年横空出世,Transformer一直都普遍存在于现代的深度学习应用中,例如 语言视觉语音强化学习 领域。
 

二  注意力机制

自经济学研究稀缺资源分配以来,人们正处在“注意力经济”时代,即 人类的注意力被视为可以交换的、有限的、有价值的且稀缺的商品。许多商业模式也被开发出来去利用这一点:在音乐或视频流媒体服务上,人 们要么消耗注意力在广告上,要么付钱来隐藏广告;为了在网络游戏世界的成长,人们要么消耗注意力在游 戏战斗中,从而帮助吸引新的玩家,要么付钱立即变得强大。总之,注意力不是免费的。

注意力机制通过注意力汇聚将查询(自主性提示)和键(非自主性提示)结合在一起,实现对值(感官输入)的选择倾向

2.1 注意力的可视化

平均汇聚层可以被视为输入的加权平均值,其中各输入的权重是一样的。实际上,注意力汇聚得到的是加权平均的总和值,其中权重是在给定的查询和不同的键之间计算得出的。

为了 可视化注意力权重,需要定义一个show_heatmaps函数。其输入matrices的形状是(要显示的行数,要显 示的列数,查询的数目,键的数目)。

import torch
from d2l import torch as d2l#@save
def show_heatmaps(matrices, xlabel, ylabel, titles=None, figsize=(2.5, 2.5), cmap='Reds'):"""显示矩阵热图"""d2l.use_svg_display()num_rows, num_cols = matrices.shape[0], matrices.shape[1]fig, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize,sharex=True, sharey=True, squeeze=False)for i, (row_axes, row_matrices) in enumerate(zip(axes, matrices)):for j, (ax, matrix) in enumerate(zip(row_axes, row_matrices)):pcm = ax.imshow(matrix.detach().numpy(), cmap=cmap)if i == num_rows - 1:ax.set_xlabel(xlabel)if j == 0:ax.set_ylabel(ylabel)if titles:ax.set_title(titles[j])fig.colorbar(pcm, ax=axes, shrink=0.6)

下面使用一个例子进行演示。在本例子中,仅当查询和键相同时,注意力权重为1,否则为0。

attention_weights = torch.eye(10).reshape((1, 1, 10, 10))
show_heatmaps(attention_weights, xlabel='Keys', ylabel='Queries')

小结:

  • 人类的注意力是有限的、有价值和稀缺的资源
  • 受试者使用非自主性和自主性提示 有选择性地引导注意力前者基于突出性,后者则依赖于意识
  • 注意力机制 与全连接层或者汇聚层的 区别 源于增加的 自主提示
  • 由于 包含了自主性提示,注意力机制与全连接的层或汇聚层不同。
  • 注意力机制通过注意力汇聚使选择 偏向于值(感官输入),其中包含查询(自主性提示)和键(非自主 性提示)。键和值是成对的
  • 可视化查询和键之间的注意力权重 是可行的。

2.2 注意力汇聚 

2.2.1 生成数据集

根据下面的非线性函数生成一个人工数据集:

        y_i = 2sin(x_i) + x_i^{0.8} + \epsilon

其中 ϵ服从均值为0和标准差为0.5的正态分布。在这里生成了50个训练样本和50个测试样本。为了更好地可视 化之后的注意力模式,需要将训练样本进行排序。

import torch
from torch import nn
from d2l import torch as d2ln_train = 50 # 训练样本数
x_train, _ = torch.sort(torch.rand(n_train) * 5) # 排序后的训练样本def f(x):return 2 * torch.sin(x) + x**0.8y_train = f(x_train) + torch.normal(0.0, 0.5, (n_train,)) # 训练样本的输出
x_test = torch.arange(0, 5, 0.1) # 测试样本
y_truth = f(x_test) # 测试样本的真实输出
n_test = len(x_test) # 测试样本数
n_test  # 50

下面的函数将绘制所有的训练样本(样本由圆圈表示),不带噪声项的真实数据生成函数f(标记为“Truth”), 以及学习得到的预测函数(标记为“Pred”)。

2.2.2 平均汇聚

先使用最简单的估计器来解决回归问题。基于平均汇聚来计算所有训练样本输出值的平均值。

def plot_kernel_reg(y_hat):d2l.plot(x_test, [y_truth, y_hat], 'x', 'y', legend=['Truth', 'Pred'],xlim=[0, 5], ylim=[-1, 5])d2l.plt.plot(x_train, y_train, 'o', alpha=0.5);y_hat = torch.repeat_interleave(y_train.mean(), n_test)
plot_kernel_reg(y_hat)

2.2.3 非参数注意力汇聚

如果一个键xi越是接近给定的查询x,那么分配给这个键对应值yi的注意力权重就会越大,也就“获得了更多的注意力”。

值得注意的是,Nadaraya‐Watson核回归是一个非参数模型。因此,是非参数的注意力汇聚(non‐ parametric attention pooling)模型。接下来,我们将基于这个非参数的注意力汇聚模型来绘制预测结果。从 绘制的结果会发现新的模型预测线是平滑的,并且比平均汇聚的预测更接近真实值。

# X_repeat的形状:(n_test,n_train),
# 每一行都包含着相同的测试输入(例如:同样的查询)
X_repeat = x_test.repeat_interleave(n_train).reshape((-1, n_train))
# x_train包含着键。attention_weights的形状:(n_test,n_train),
# 每一行都包含着要在给定的每个查询的值(y_train)之间分配的注意力权重
attention_weights = nn.functional.softmax(-(X_repeat - x_train)**2 / 2, dim=1)
# y_hat的每个元素都是值的加权平均值,其中的权重是注意力权重
y_hat = torch.matmul(attention_weights, y_train)
plot_kernel_reg(y_hat)

现在来观察注意力的权重。这里测试数据的输入相当于查询,而训练数据的输入相当于键。因为两个输入都 是经过排序的,因此由观察可知 “查询‐键”对越接近,注意力汇聚的注意力权重就越高

d2l.show_heatmaps(attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')

2.2.4 带参数注意力汇聚

非参数的Nadaraya‐Watson核回归具有一致性(consistency)的优点:如果有足够的数据,此模型会收敛到最优结果。尽管如此,我们还是可以轻松地将可学习的参数集成到注意力汇聚中。

为了更有效地计算小批量数据的注意力,我们可以利用深度学习开发框架中提供的批量矩阵乘法

假设第一个小批量数据包含n个矩阵X1, . . . , Xn,形状为a × b,第二个小批量包含n个矩阵Y1, . . . , Yn,形状 为b × c。它们的批量矩阵乘法得到n个矩阵 X1Y1, . . . , XnYn,形状为a × c。因此,假定两个张量的形状分别 是(n, a, b)和(n, b, c),它们的 批量矩阵乘法输出的形状为(n, a, c)

X = torch.ones((2, 1, 4))
Y = torch.ones((2, 4, 6))
torch.bmm(X, Y).shape   # torch.Size([2, 1, 6])
torch.bmm(X, Y)   
# tensor([[[4., 4., 4., 4., 4., 4.]],
#         [[4., 4., 4., 4., 4., 4.]]])

在注意力机制的背景中,我们可以使用 小批量矩阵乘法来计算小批量数据中的加权平均值

weights = torch.ones((2, 10)) * 0.1
values = torch.arange(20.0).reshape((2, 10))
torch.bmm(weights.unsqueeze(1), values.unsqueeze(-1))# tensor([[[ 4.5000]],
#         [[14.5000]]])

2.2.5 定义模型

使用 小批量矩阵乘法,定义Nadaraya‐Watson核回归的带参数版本为:

class NWKernelRegression(nn.Module):def __init__(self, **kwargs):super().__init__(**kwargs)self.w = nn.Parameter(torch.rand((1,), requires_grad=True))def forward(self, queries, keys, values):# queries和attention_weights的形状为(查询个数,“键-值”对个数)queries = queries.repeat_interleave(keys.shape[1]).reshape((-1, keys.shape[1]))self.attention_weights = nn.functional.softmax(-((queries - keys) * self.w)**2 / 2, dim=1)# values的形状为(查询个数,“键-值”对个数)return torch.bmm(self.attention_weights.unsqueeze(1),values.unsqueeze(-1)).reshape(-1)

接下来,将训练数据集变换为键和值用于训练注意力模型。在带参数的注意力汇聚模型中,任何一个训练样 本的输入都会和除自己以外的所有训练样本的“键-值”对进行计算,从而得到其对应的预测输出。

# X_tile的形状:(n_train,n_train),每一行都包含着相同的训练输入
X_tile = x_train.repeat((n_train, 1))
# Y_tile的形状:(n_train,n_train),每一行都包含着相同的训练输出
Y_tile = y_train.repeat((n_train, 1))
# keys的形状:('n_train','n_train'-1)
keys = X_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))
# values的形状:('n_train','n_train'-1)
values = Y_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))

训练带参数的注意力汇聚模型时,使用平方损失函数和随机梯度下降

net = NWKernelRegression()
loss = nn.MSELoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=0.5)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[1, 5])
for epoch in range(5):trainer.zero_grad()l = loss(net(x_train, keys, values), y_train)l.sum().backward()trainer.step()print(f'epoch {epoch + 1}, loss {float(l.sum()):.6f}')animator.add(epoch + 1, float(l.sum()))

如下所示,训练完带参数的注意力汇聚模型后可以发现:在尝试拟合带噪声的训练数据时,预测结果绘制的 线不如之前非参数模型的平滑

# keys的形状:(n_test,n_train),每一行包含着相同的训练输入(例如,相同的键)
keys = x_train.repeat((n_test, 1))
# value的形状:(n_test,n_train)
values = y_train.repeat((n_test, 1))
y_hat = net(x_test, keys, values).unsqueeze(1).detach()
plot_kernel_reg(y_hat)

为什么新的模型更不平滑了呢?下面看一下输出结果的绘制图:与非参数的注意力汇聚模型相比,带参数的模型加入可学习的参数后,曲线在注意力权重较大的区域变得更不平滑

d2l.show_heatmaps(net.attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')

小结:

  • Nadaraya‐Watson核回归是 具有注意力机制的机器学习范例
  • Nadaraya‐Watson核回归的注意力汇聚是 对训练数据中输出的加权平均。从注意力的角度来看,分配给每个值的注意力权重取决于将值所对应的键和查询作为输入的函数。
  • 注意力汇聚可以分为 非参数型和带参数型

三  注意力评分函数

上节使用了 高斯核 来对查询和键之间的关系建模。其中的高斯核指数部分可以视为 注意力评分函数 (attention scoring function),简称评分函数(scoring function),然后把这个函数的输出结果输入到 softmax函数中进行运算。通过上述步骤,将得到与键对应的值的概率分布(即注意力权重)。最后,注意力汇聚的输出 就是基于这些注意力权重的值的加权和。

从宏观来看,上述算法可以用来实现了之前的注意力机制框架。下图说明了如何将注意力汇聚的输出 计算成为值的加权和,其中a表示注意力评分函数。由于注意力权重是概率分布,因此加权和其本质上是加权平均值

正如上图所示,选择不同的注意力评分函数a会导致不同的注意力汇聚操作。本节将介绍两个流行的评分函数稍后将用他们来实现更复杂的注意力机制

softmax操作 用于输出一个概率分布作为 注意力权重。在某些情况下,并非所有的值都应该 被纳入到注意力汇聚中。为了仅将有意义的词元作为值来获取注意力汇聚,可以指定一个有效序列长度(即词元的个数), 以便在计算softmax时过滤掉超出指定范围的位置。下面的masked_softmax函数 实现了这样的掩蔽softmax操 作(masked softmax operation),其中任何超出有效长度的位置都被掩蔽并置为0

import math
import torch
from torch import nn
from d2l import torch as d2l#@save
def masked_softmax(X, valid_lens):"""通过在最后一个轴上掩蔽元素来执行softmax操作"""# X:3D张量,valid_lens:1D或2D张量if valid_lens is None:return nn.functional.softmax(X, dim=-1)else:shape = X.shapeif valid_lens.dim() == 1:valid_lens = torch.repeat_interleave(valid_lens, shape[1])else:valid_lens = valid_lens.reshape(-1)# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,value=-1e6)return nn.functional.softmax(X.reshape(shape), dim=-1)

为了 演示此函数 是如何工作的,考虑由两个2 × 4矩阵表示的样本,这两个样本的有效长度分别为2和3。经过掩蔽softmax操作,超出有效长度的值都被掩蔽为0。

masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))# tensor([[[0.5572, 0.4428, 0.0000, 0.0000],
#          [0.5652, 0.4348, 0.0000, 0.0000]],#         [[0.3246, 0.2382, 0.4372, 0.0000],
#          [0.2726, 0.4352, 0.2922, 0.0000]]])

同样,也可以使用二维张量,为矩阵样本中的每一行指定有效长度

masked_softmax(torch.rand(2, 2, 4), torch.tensor([[1, 3], [2, 4]]))# tensor([[[1.0000, 0.0000, 0.0000, 0.0000],
#          [0.3557, 0.2924, 0.3519, 0.0000]],#         [[0.4293, 0.5707, 0.0000, 0.0000],
#          [0.3322, 0.1845, 0.2947, 0.1886]]])

3.1 加性注意力

一般来说,当查询和键是不同长度的矢量时,可以使用加性注意力作为评分函数

其中可学习的参数是Wq ∈ R^h×q、Wk ∈ R^h×k和 wv ∈ R h。将查询和键连结起来后输入到一 个多层感知机(MLP)中,感知机包含一个隐藏层,其隐藏单元数是一个超参数h。通过 使用tanh作为激活函数,并且 禁用偏置项

#@save
class AdditiveAttention(nn.Module):"""加性注意力"""def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):super(AdditiveAttention, self).__init__(**kwargs)self.W_k = nn.Linear(key_size, num_hiddens, bias=False)self.W_q = nn.Linear(query_size, num_hiddens, bias=False)self.w_v = nn.Linear(num_hiddens, 1, bias=False)self.dropout = nn.Dropout(dropout)def forward(self, queries, keys, values, valid_lens):queries, keys = self.W_q(queries), self.W_k(keys)# 在维度扩展后,# queries的形状:(batch_size,查询的个数,1,num_hidden)# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)# 使用广播方式进行求和features = queries.unsqueeze(2) + keys.unsqueeze(1)features = torch.tanh(features)# self.w_v仅有一个输出,因此从形状中移除最后那个维度。# scores的形状:(batch_size,查询的个数,“键-值”对的个数)scores = self.w_v(features).squeeze(-1)self.attention_weights = masked_softmax(scores, valid_lens)# values的形状:(batch_size,“键-值”对的个数,值的维度)return torch.bmm(self.dropout(self.attention_weights), values)

用一个 小例子来演示 上面的AdditiveAttention类,其中查询、键和值的形状为(批量大小,步数或词元序列 长度,特征大小),实际输出为(2, 1, 20)、(2, 10, 2)和(2, 10, 4)。注意力汇聚输出的形状为(批量大小,查询的 步数,值的维度)。

queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))
# values的小批量,两个值矩阵是相同的
values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(2, 1, 1)
valid_lens = torch.tensor([2, 6])
attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8,dropout=0.1)
attention.eval()
attention(queries, keys, values, valid_lens)# tensor([[[ 2.0000,  3.0000,  4.0000,  5.0000]],
#         [[10.0000, 11.0000, 12.0000, 13.0000]]], grad_fn=<BmmBackward0>)

尽管加性注意力包含了 可学习的参数,但由于本例子中每个键都是相同的,所以注意力权重是均匀的,由指 定的有效长度决定。

d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),xlabel='Keys', ylabel='Queries')

3.2 缩放点积注意力

使用 点积可以得到计算效率更高的评分函数,但是 点积操作要求查询和键具有相同的长度d。假设查询和键 的所有元素都是独立的随机变量,并且都满足零均值和单位方差,那么两个向量的点积的均值为0,方差为d。 为确保无论向量长度如何,点积的方差在不考虑向量长度的情况下仍然是1,我们再将点积除以√ d。

下面的缩放点积注意力的实现 使用了暂退法进行模型正则化

#@save
class DotProductAttention(nn.Module):"""缩放点积注意力"""def __init__(self, dropout, **kwargs):super(DotProductAttention, self).__init__(**kwargs)self.dropout = nn.Dropout(dropout)# queries的形状:(batch_size,查询的个数,d)# keys的形状:(batch_size,“键-值”对的个数,d)# values的形状:(batch_size,“键-值”对的个数,值的维度)# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)def forward(self, queries, keys, values, valid_lens=None):d = queries.shape[-1]# 设置transpose_b=True为了交换keys的最后两个维度scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)self.attention_weights = masked_softmax(scores, valid_lens)return torch.bmm(self.dropout(self.attention_weights), values)

为了演示上述的DotProductAttention类,我们使用与先前加性注意力例子中相同的键、值和有效长度。对于 点积操作,我们令 查询的特征维度与键的特征维度大小相同

queries = torch.normal(0, 1, (2, 1, 2))
attention = DotProductAttention(dropout=0.5)
attention.eval()
attention(queries, keys, values, valid_lens)# tensor([[[ 2.0000,  3.0000,  4.0000,  5.0000]],
#         [[10.0000, 11.0000, 12.0000, 13.0000]]])

与加性注意力演示相同,由于键包含的是相同的元素,而这些元素无法通过任何查询进行区分,因此获得了  均匀的注意力权重

d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),xlabel='Keys', ylabel='Queries')

小结:

  • 将注意力汇聚的输出计算可以作为值的加权平均,选择不同的注意力评分函数会带来不同的注意力汇聚操作
  • 当查询和键是不同长度的矢量时,可以使用可加性注意力评分函数。当它们的长度相同时,使用缩放的 “点-积”注意力评分函数的计算效率更高

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/325567.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

sqli-labs 第八关盲注python脚本

目录 ​编辑 判断库名 1.库名长度 2.库名 import requests import mathurl "http://127.0.0.1/Less-8"def dblength():for i in range(20):payload f"1 and length(database())>{i}-- "data {id: payload}res requests.get(url, paramsdata)if …

Google与哈佛大学的科学家团队共同创造了一张人脑中一个极小部分的精细地图

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

华为交换机基础配置命令

01常用命令视图 02创建VLAN //用户视图&#xff0c;一般display命令查看信息比较多。 system-view //准备进入系统视图。 [Huawei]vlan 100 //创建vlan 100。 [Huawei-vlan100]quit //退回系统视图。 03将端口加入到vlan中 [Huawei] interface GigabitEthernet2/0/1 //(10G光口…

Python爬虫实战:爬取【某旅游交通出行类网站中国内热门景点】的评论数据,使用Re、BeautifulSoup与Xpath三种方式解析数据,代码完整

一、分析爬取网页&#xff1a; 1、网址 https://travel.qunar.com/2、 打开网站&#xff0c;找到要爬取的网页 https://travel.qunar.com/p-cs299979-chongqing进来之后&#xff0c;找到评论界面&#xff0c;如下所示&#xff1a;在这里我选择驴友点评数据爬取点击【驴友点评…

Ardupilot开源代码之Rover上路 - 后续1

Ardupilot开源代码之Rover上路 - 后续1 1. 源由2. 问题汇总2.1 问题1&#xff1a;飞控选择2.2 问题2&#xff1a;飞控安装位置和固定2.3 问题3&#xff1a;各种插头、插座配套2.4 问题4&#xff1a;分电板缺陷2.5 问题5&#xff1a;电机编码器接线及正反向问题2.6 问题6&#x…

springboot+vue+mybatis灵活就业服务平台+PPT+论文+讲解+售后

随着网络科技的不断发展以及人们经济水平的逐步提高&#xff0c;网络技术如今已成为人们生活中不可缺少的一部分&#xff0c;而微信小程序是通过计算机技术&#xff0c;针对用户需求开发与设计&#xff0c;该技术尤其在各行业领域发挥了巨大的作用&#xff0c;有效地促进了灵活…

YOLOv9全网最新改进系列:YOLOv9完美融合标准化的注意力模块NAM,高效且轻量级的归一化注意力机制,助力目标检测再上新台阶!

YOLOv9全网最新改进系列&#xff1a;YOLOv9完美融合标准化的注意力模块NAM&#xff0c;高效且轻量级的归一化注意力机制&#xff0c;助力目标检测再上新台阶&#xff01;&#xff01;&#xff01; YOLOv9原文链接戳这里&#xff0c;原文全文翻译请关注B站Ai学术叫叫首er B站全…

win11个性化锁屏界面怎么关闭?

win11个性化锁屏界面关闭方法对于win11用户来说&#xff0c;关闭个性化锁屏界面是一个常见问题。本文将由php小编苹果详细介绍如何执行此操作&#xff0c;分步指导并提供操作截图。继续阅读以了解具体步骤。 win11个性化锁屏界面关闭方法 第一步&#xff0c;点击底部Windows图…

「 安全设计 」68家国内外科技巨头和安全巨头参与了CISA发起的安全设计承诺,包含MFA、默认密码、CVE、VDP等七大承诺目标

美国网络安全和基础设施安全局&#xff08;CISA&#xff0c;CyberSecurity & Infrastructure Security Agency&#xff09;于2024年5月开始呼吁企业是时候将网络安全融入到技术产品的设计和制造中了&#xff0c;并发起了安全设计承诺行动&#xff0c;该承诺旨在补充和建立现…

唤醒手腕 Go 语言 并发编程、Channel通道、Context 详细教程(更新中)

并发编程概述 ​ 一个进程可以包含多个线程&#xff0c;这些线程运行的一定是同一个程序&#xff08;进程程序&#xff09;&#xff0c;且都由当前进程中已经存在的线程通过系统调用的方式创建出来。进程是资源分配的基本单位&#xff0c;线程是调度运行的基本单位&#xff0c…

贪吃蛇——C语言实践

目录 1. 游戏效果演示 2. 课程目标 3.项目适合对象 4.技术要点 5. Win32 API介绍 5.1 Win32 API 5.2 控制台程序 5.3 控制台屏幕上的坐标COORD 5.4 GetStdHandle 5.5 GetConsoleCursorInfo 5.5.1 CONSOLE_CURSOR_INFO 5.6 SetConsoleCursorInfo 5.7 SetConsoleCurs…

uniapp开发小程序使用vue的v-html解析富文本图片过大过宽显示超过屏幕解决办法

如果没有设置的话&#xff0c;就会导致图片溢出&#xff0c;过宽显示或者错位显示&#xff0c;显示效果非常的丑陋&#xff1a; 修改后显示的效果&#xff1a; 网上比较low的解决办法&#xff1a;网上各种解决方法核心思想就是在数据层把数据模板上的img数据加上style样式&…

在vue3中,如何优雅的使用echarts之实现大屏项目

前置知识 效果图 使用技术 Vue3 Echarts Gasp Gasp&#xff1a;是一个 JavaScript动画库,它支持快速开发高性能的 Web 动画。在本项目中&#xff0c;主要是用于做轨迹运动 所需安装的插件 npm i echarts npm i countup.js 数字滚动特效 npm i gsap javascript动画库 np…

蓝桥杯-网络安全比赛(6) 模拟实验 Metasploit 控制并获取Windows 登录HASH、LM Hash和NTLM Hash密文解析

窃取WINDOWS账号密码 系统环境&#xff1a;主机&#xff08;Windows系统 IP&#xff1a;192.168.126.129)&#xff0c;虚拟机&#xff08;KALI系统 IP&#xff1a;192.168.126.3&#xff09;&#xff0c;两者需要能通过本地网络互通互连。 攻击工具&#xff1a;Metasploit是一…

基于EBAZ4205矿板的图像处理:12图像二值化(阈值可调)

基于EBAZ4205矿板的图像处理&#xff1a;12图像二值化(阈值可调) 我的项目是基于EBAZ4205矿板的阈值可调的图像阈值二值化处理&#xff0c;可以通过按键调整二值化的阈值&#xff0c;key1为阈值加1&#xff0c;key4为阈值减1&#xff0c;key2为阈值加10&#xff0c;key5为阈值…

java项目之校园失物招领系统(springboot+vue+mysql)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的校园失物招领系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 校园失物招领系统的主要…

如何更好地使用Kafka? - 运行监控篇

要确保Kafka在使用过程中的稳定性&#xff0c;需要从kafka在业务中的使用周期进行依次保障。主要可以分为&#xff1a;事先预防&#xff08;通过规范的使用、开发&#xff0c;预防问题产生&#xff09;、运行时监控&#xff08;保障集群稳定&#xff0c;出问题能及时发现&#…

LLaMA 羊驼系大语言模型的前世今生

关于 LLaMA LLaMA是由Meta AI发布的大语言系列模型&#xff0c;完整的名字是Large Language Model Meta AI&#xff0c;直译&#xff1a;大语言模型元AI。Llama这个单词本身是指美洲大羊驼&#xff0c;所以社区也将这个系列的模型昵称为羊驼系模型。 Llama、Llama2 和 Llama3…

前端笔记-day02

文章目录 01-无序列表02-有序列表03-定义列表04-表格06-表格-合并单元格07-表单-input08-表单-input占位文本09-表单-单选框10-表单-上传多个文件11-表单-多选框12-表单-下拉菜单13-表单-文本域14-表单-label标签15-表单-按钮16-无语义-span和div17-字体实体19-注册登录页面 01…

2024中国(重庆)无人机展览会8月在重庆举办

2024中国(重庆)无人机展览会8月在重庆举办 邀请函 主办单位&#xff1a; 中国航空学会 重庆市南岸区人民政府 招商执行单位&#xff1a; 重庆港华展览有限公司 报名&#xff1a;【交易会I 59交易会2351交易会9466】 展会背景&#xff1a; 为更好的培养航空航天产业和无人…