基于YOLOV8复杂场景下船舶目标检测系统

1. 背景

海洋作为地球上70%的表面积,承载着人类生活、经济发展和生态系统的重要功能。船舶作为海洋活动的主要载体之一,在海上运输、资源开发、环境监测等方面发挥着重要作用。复杂海洋环境下的船舶目标检测成为了海事管理、海洋资源开发和环境保护等领域的关键技术之一。

2. YOLOv8算法

为什么我应该使用 YOLOv8?

  • YOLOv8 具有许多开发人员方便的功能,从易于使用的 CLI 到结构良好的 Python 包。
  • YOLO 周围有一个庞大的社区,围绕 YOLOv8 模型的社区也在不断壮大,这意味着计算机视觉圈子里有很多人在你需要指导时可以为您提供帮助。YOLOv8在COCO上实现了很高的准确性。例如,YOLOv8m模型 - 中等模型 - 在COCO上测量时达到50.2%的mAP。当针对Roboflow 100(专门评估各种任务特定域上的模型性能的数据集)进行评估时,YOLOv8的得分明显优于YOLOv5。本文后面的性能分析中提供了有关此内容的更多信息。此外,YOLOv8 中方便开发人员的功能也很重要。与其他模型相反,任务被拆分到您可以执行的许多不同 Python 文件中,YOLOv8 带有一个 CLI,使训练模型更加直观。这是对 Python 包的补充,该包提供了比以前的模型更无缝的编码体验。当您考虑使用模型时,YOLO 周围的社区值得注意。许多计算机视觉专家都知道 YOLO 及其工作原理,并且网上有很多关于在实践中使用 YOLO 的指导。尽管 YOLOv8 在撰写本文时是新的,但网上有许多指南可以提供帮助。以下是一些学习资源,您可以使用它们来提高您对 YOLO 的了解:
  • Roboflow 模型上的 YOLOv8 模型卡
  • 如何在自定义数据集上训练YOLOv8模型
  • 如何在自定义数据集上训练YOLOv8模型
  • 用于训练YOLOv8目标检测模型的谷歌Colab笔记本
  • 用于训练YOLOv8分类模型的谷歌Colab笔记本
  • 用于训练YOLOv8分割模型的谷歌Colab笔记本
  • 使用YOLOv8和ByteTRACK跟踪和计数车辆)让我们深入了解架构以及 YOLOv8 与以前的 YOLO 模型的不同之处。

2.1 YOLOv8检测网络

在这里插入图片描述

2.2 模型结构

如下图, 左侧为 YOLOv5-s,右侧为 YOLOv8-s。
在暂时不考虑 Head 情况下,对比 YOLOv5 和 YOLOv8 的 yaml 配置文件可以发现改动较小。
在这里插入图片描述
在这里插入图片描述

3. 软件界面功能

  1. 可用于实时检测各类复杂场景种的船舶位置,并显示目标数量;
  2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测;
  3. 界面可实时显示目标位置、目标总数、置信度、用时等信息;
  4. 支持图片或者视频的检测结果保存;

4. 数据集与训练

数据集为各类复杂场景下的船舶图片,并使用Labelimg标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含5090张图片,其中训练集包含4576张图片,验证集包含509张图片,测试包含5张图片。
该数据集是专为研究和解决复杂场景下船舶目标检测问题而设计。包含多样性丰富的环境,如交通繁忙的港口、船只密集的渔业区,以及船与岸边混合交通场景。与传统的船舶目标检测数据集不同,本数据集特意考虑了在实际应用场景中常见但在数据集中经常被忽视的问题。例如,船舶在图像或视频帧中不一定是主体,有时仅作为背景出现。此外,数据集还包括船只部分或完全被其他对象遮挡的情况。这些特点使得本数据集非常适用于开发和评估目标检测算法在复杂、多变和部分遮挡条件下的性能。数据集旨在推动船舶目标检测和相关领域的研究进展,以满足日益增长的实际应用需求,例如航海安全、渔业管理以及海洋环境保护等。
在这里插入图片描述
在这里插入图片描述
data.yaml的具体内容如下:

train: D:\BoatDetection\datasets\Data\train
val: D:\BoatDetection\datasets\Data\val
nc: 1
names: ['boat']

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

from ultralytics import YOLO# 加载预训练模型
model = YOLO("yolov8n.pt")
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='D:\BoatDetection\datasets\Data\data.yaml', epochs=300, batch=4)  # 训练模型

4.1 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述
本文训练结果如下:
在这里插入图片描述
PR曲线:
在这里插入图片描述

5. 检测结果识别

在这里插入图片描述

6. 结论与展望

基于YOLOv8的船舶目标检测系统为复杂海洋环境下的船舶监测与管理提供了一种高效准确的解决方案。未来,随着人工智能和深度学习技术的不断发展,该系统将进一步提升在海洋领域的应用价值,为构建美丽海洋、实现可持续发展做出更大贡献。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/325929.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# winform 以modbus TCP方式读取数据

C# winform 以modbus TCP方式读取数据 一、modbus开发 //nmodbus4读取到的数据都是ushort类型TcpClient tcpClient new TcpClient();tcpClient.Connect("127.0.0.1", 502);//连接到主机ModbusIpMaster master ModbusIpMaster.CreateIp(tcpClient);//Ip 主站 byte …

【图解计算机网络】TCP 重传、滑动窗口、流量控制、拥塞控制

TCP 重传、滑动窗口、流量控制、拥塞控制 TCP 重传超时重传快速重传 滑动窗口流量控制拥塞控制慢启动拥塞避免拥塞发生快速恢复 TCP 重传 TCP重传是当发送的报文发生丢失的时候,重新发送丢失报文的一种机制,它是保证TCP协议可靠性的一种机制。 TCP重传…

Redis集群安装

将Redis安装包分别上传到3个文件夹,并解压缩 #编译并指定安装目录 cd /root/usr/local/redis-cluster/redis-7001/redis-6.2.6/ make make PREFIX/root/usr/local/redis-cluster/redis-7001 install # cd /root/usr/local/redis-cluster/redis-7002/redis-6.2.6/ m…

FANUC机器人初始化系统的基本方法和步骤

FANUC机器人初始化系统的基本方法和步骤 首先,在做系统初始化之前,必须做好系统的备份,这里做个镜像备份,更详细的镜像备份步骤可参考以下链接中的内容: FANUC机器人进行全部备份和镜像备份以及加载备份文件的具体操作(图文) 如下图所示,在示教器右边的USB接口上插个…

数据结构(一)绪论

2024年5月11日 一稿 数据元素+数据项 逻辑结构 集合 线性结构 树形结构 图结构

没有公网ip,如何实现外网访问内网?

目前拨号上网是最广泛的上网方式,这种方式优点是价格便宜,缺点是没有固定公网ip,每次重新您拨号ip地址都会变。如果有一台服务器,需要实现外网访问,在没有固定公网ip的环境下,该如何实现呢?使用…

认识卷积神经网络

我们现在开始了解卷积神经网络,卷积神经网络是深度学习在计算机视觉领域的突破性成果,在计算机视觉领域,往往我们输入的图像都很大,使用全连接网络的话,计算的代价较高,图像也很难保留原有的特征&#xff0…

如何在windows server下安装mysql5.7数据库,并使用Navicat Premium 15可视化工具新建数据库并读取数据库信息。

如何在windows server下安装mysql5.7数据库? MySQL :: Download MySQL Community Server (Archived Versions)https://downloads.mysql.com/archives/community/点击↑,然后选择对应版本和平台↓下载 将下载后的安装包放入固定目录(这里以D:…

最大子矩阵:前缀和、动态规划

最近在学习动态规划,在牛客上刷题时碰到了这一题。其实最初的想法是暴力和前缀和,但是时间复杂度极高,需要套4层循环。后来去网上搜了一下相关的题解和做法,进而了解到了前缀和+线性动态规划的做法。但是在成功做出这题…

带头单链表 C++实现

节点定义 带头单链表&#xff1a;我们只需要一个结点指针指向整个链表的第一个节点&#xff0c;这样我们就可以通过next指针访问整个链表内的所有节点 template<class T> struct ListNode {T _val;ListNode* _next;ListNode(const T &val):_val(val),_next(nullptr){…

开发组合php+mysql 人才招聘小程序源码搭建 招聘平台系统源码+详细图文搭建部署教程

随着互联网的快速发展&#xff0c;传统的招聘方式已经不能满足企业和求职者的需求。为了提高招聘效率&#xff0c;降低招聘成本&#xff0c;越来越多的人开始关注人才招聘小程序、在线招聘平台。分享一个人才招聘小程序源码及搭建&#xff0c;让招聘更加高效便捷。系统是运营级…

【算法】滑动窗口——串联所有单词的子串

今天来以“滑动窗口”的思想来详解一道比较困难的题目——串联所有单词的子串&#xff0c;有需要借鉴即可。 目录 1.题目2.下面是示例代码3.总结 1.题目 题目链接&#xff1a;LINK 这道题如果把每个字符串看成一个字母&#xff0c;就是另外一道中等难度的题目&#xff0c;即&…

2022——蓝桥杯十三届2022国赛大学B组真题

问题分析 看到这个问题的同学很容易想到用十层循环暴力计算&#xff0c;反正是道填空题&#xff0c;一直算总能算得出来的&#xff0c;还有些同学可能觉得十层循环太恐怖了&#xff0c;写成回溯更简洁一点。像下面这样 #include <bits/stdc.h> using namespace std; in…

用 Supabase CLI 进行本地开发环境搭建

文章目录 &#xff08;零&#xff09;前言&#xff08;一&#xff09;Supabase CLI&#xff08;1.1&#xff09;安装 Scoop&#xff08;1.2&#xff09;用 Scoop 安装 Supabase CLI &#xff08;二&#xff09;本地项目环境&#xff08;2.1&#xff09;初始化项目&#xff08;2…

C++ | Leetcode C++题解之第86题分隔链表

题目&#xff1a; 题解&#xff1a; class Solution { public:ListNode* partition(ListNode* head, int x) {ListNode* small new ListNode(0);ListNode* smallHead small;ListNode* large new ListNode(0);ListNode* largeHead large;while (head ! nullptr) {if (head-…

Spring STOMP-消息处理流程

一旦STOMP的接口被公布&#xff0c;Spring应用程序就成为连接客户端的STOMP代理。本节描述服务端消息处理的流程。 spring-messaging模块包含消息类应用的基础功能&#xff0c;这些功能起源于Spring Integration项目。并且&#xff0c;后来被提取整合到Spring框架&#xff0c;…

Zookeeper 注册中心:单机部署

序言 本文给大家介绍 Zookeeper 单机部署流程、 如何与 Spring 整合使用。除此之外&#xff0c;还有 Zookeeper 作为注册中心与 SpringCloud 的整合流程。 一、部署流程 官网下载 Zookeeper 安装包 解压安装包到指定目录 进入 apache-zookeeper-3.8.4-bin/conf 目录&…

目标检测——印度车辆数据集

引言 亲爱的读者们&#xff0c;您是否在寻找某个特定的数据集&#xff0c;用于研究或项目实践&#xff1f;欢迎您在评论区留言&#xff0c;或者通过公众号私信告诉我&#xff0c;您想要的数据集的类型主题。小编会竭尽全力为您寻找&#xff0c;并在找到后第一时间与您分享。 …

《C++学习笔记---初阶篇6》---string类 上

目录 1. 为什么要学习string类 1.1 C语言中的字符串 2. 标准库中的string类 2.1 string类(了解) 2.2 string类的常用接口说明 2.2.1. string类对象的常见构造 2.2.2. string类对象的容量操作 2.2.3.再次探讨reserve与resize 2.2.4.string类对象的访问及遍历操作 2.2.5…

【Spring】验证 @ServerEndpoint 的类成员变量线程安全

文章目录 前言猜想来源验证方法Controller 的情况ServerEndpoint 的情况 后记 前言 最近有 websocket 的需求。探索 ServerEndpoint 的类成员变量特点。 这里类比 Controller 讨论 ServerEndpoint 类成员变量是否线程安全。 猜想来源 网上的教程大多数都这么展示程序&#…