字节面试:百亿级数据存储,怎么设计?只是分库分表吗?

尼恩:百亿级数据存储架构起源

在40岁老架构师 尼恩的读者交流群(50+)中,经常性的指导小伙伴们改造简历。

经过尼恩的改造之后,很多小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试机会,拿到了大厂机会。

这些机会的来源,主要是尼恩给小伙伴 改造了简历,植入了亮点项目、黄金项目。

尼恩的 亮点项目、黄金项目 需要持续迭代。

下一个亮点项目、黄金项目是:百亿级数据存储架构。

同时,小伙伴在面试时,经常遇到这个面试难题。比如,前几天一个小伙伴面试字节,就遇到了这道题

字节面试:百亿级数据存储,怎么设计?只是分库分表吗?

于是,尼恩组织小伙伴开始研究和 设计 《百亿级数据存储架构》,帮助大家打造一个新的黄金项目,实现大厂的梦想。

百亿级数据存储架构,只有分库分表吗?

很多的小伙伴来咨询尼恩, 百亿级数据存储怎么架构,说他们的面试中,都遇到的。

比如,前几天一个小伙伴面试字节,就遇到了这道题

字节面试:百亿级数据存储,怎么设计?

他们回答了分库分表。

大家都知道,当一个表(比如t_order) 达到500万条或2GB时,需要考虑水平分表。

这个虽然是常识了,但是面试官不满意。

很多的小伙伴来咨询尼恩,为什么?

这里,尼恩用20年的技术功力,给大家做一个彻底性、系统化梳理,帮助大家吊打面试。

从0到1, 百亿级数据存储架构,怎么设计?

咱们的生产需求上,百亿级数据存储架构, 一般来说,需要具备以下四个能力:

  • 高并发的在线ACID事务 (分库分表)
  • 高并发的在线搜索 (倒排表副本)
  • 海量数据的离线处理 (高可用+全量副本)
  • 冗余表双写能力 (不同业务维度的副本)

其中,上面的冗余表双写能力, 也就是 高并发的 多业务维度 在线ACID 事务处理能力

比如在海量订单场景,

  • 用户维度的在线ACID 事务订单处理能力,需要进行用户维度的分库分表。
  • 商家维度的在线ACID 事务订单处理能力,需要进行商家维度的分库分表。

如果不需要 不同业务维度的 在线ACID 事务订单处理能力,那么冗余表双写能力 这个是可选项。

这是引入这么多的副本,有好处,也有坏处:

  • 好处是满足各种各样的处理要求
  • 坏处是我们要维护多个副本之间的数据一致。

百亿级数据存储架构,多副本之间的数据一致如何实现?

便于商品的聚合搜索,高速搜索,采用两大优化方案:

  • 把商品数据冗余存储在Elasticsearch中,实现高速搜索
  • 把商品数据冗余存储在redis 中,实现高速缓存

在这里插入图片描述

很多的时候,要求保持很高的数据一致性。

比如:

  • 要求 mysql 与 es 做到秒级别的数据同步。
  • 要求 mysql 与 redis 做到秒级别的数据同步。
  • 要求 mysql 与 hbase 做到秒级别的数据同步。

接下来,以 mysql 与 es 的数据一致,作为业务场景进行分析, 其他的场景比如mysql 与 redis 的数据一致性方案,都是差不多的。

只要大家能把下面的 5大数据一致性方案, 滔滔不绝的说出来,面试官一定会爱到 “不能自已、口水直流”。

方案一:同步双写

同步双写是一种最为简单的方式,在将数据写到 MySQL 时,同时将数据写到 ES。

在这里插入图片描述

同步双写优点:

这种方式简单粗暴,实时写入能做到秒级。

同步双写缺点:

  • 业务耦合,这种方式代码侵入性强,商品的管理中耦合大量数据同步代码,要在之前写 mysql 的地方加写 es 的代码。以后写 mysql 的地方也要加写 es 的代码。
  • 影响性能,写入两个存储,响应时间变长,本来 MySQL 的性能不是很高,再加一个 ES,系统的性能必然会下降。
  • 不便扩展:搜索可能有一些个性化需求,需要对数据进行聚合,这种方式不便实现
  • 高风险:存在双写失败丢数据风险

方案2:异步双写

同步操作性能低,异步性能高。

异步双写,分为两种:

  • 使用内存队列(如阻塞队列)异步
  • 使用消息队列进行异步

方案2.1 使用内存队列(如阻塞队列)异步

先把商品数据写入DB后,然后把 数据写入 BlockingQueue 阻塞队列

消费线程异步从 drain 数据,batch 写入 ElasticSearch, 保证数据一致性

在这里插入图片描述

方案2.2 使用消息队列(如阻塞队列)异步

如果内存队列里边数据丢失,那么es 当中的数据和DB就不一致了

如何解决呢?

  • 方式1:定期同步 db数据到 es ,同步周期一般比较长,这里有比较长时间的不一致
  • 方式2: 保证队列的可靠性,使用高可靠消息队列

生产场景中,一般会有一个搜索服务,由搜索服务去订阅商品变动的消息,来完成同步。

在这里插入图片描述

异步双写优点:

  • 性能高;
  • 不易出现数据丢失问题,主要基于 MQ 消息的消费保障机制,比如 ES 宕机或者写入失败,还能重新消费 MQ 消息;
  • 多源写入之间相互隔离,便于扩展更多的数据源写入。

异步双写缺点:

  • 硬编码问题,接入新的数据源需要实现新的消费者代码;
  • 系统复杂度增加,引入了消息中间件;
  • MQ是异步消费模型,用户写入的数据不一定可以马上看到,造成延时。

方案三:定期同步

为了保证 DB和ES /HBase 数据一致性,包括两个方面:

  • 增量数据一致性
  • 全量数据一致性

在这里插入图片描述

为了保证 DB和ES /HBase 的全量数据一致性, 往往需要进行定期的全量数据同步

在这里插入图片描述

数据增量数据,很少,并且,一致性要求不高,那么可以把增量数据一致性行的 同步双写、异步双写去掉。

在这里插入图片描述

定期同步优点:

实现比较简单

定期同步缺点:

  • 实时性难以保证
  • 对存储压力较大

当然,增量数据,可以考虑用定时任务来处理:

  1. 数据库的相关表中增加一个字段为 timestamp 的字段,任何 CURD 操作都会导致该字段的时间发生变化;
  2. 原来程序中的 CURD 操作不做任何变化;
  3. 增加一个定时器程序,让该程序按一定的时间周期扫描指定的表,把该时间段内发生变化的数据提取出来;
  4. 逐条写入到 ES 中。

方案四:数据订阅

如果要提高实时性,又要低入侵, 可以利用 MySQL 的 Binlog 来进行同步。

MySQL通过binlog订阅实现主从同步,canal Server 是一个伪装的slave节点,接收到binlog日志后,发送到MQ, 其他的 存储消费 MQ里边 的binlog日志,实现数据订阅。

架构图如下

在这里插入图片描述

这种方式和异步双写比较像,但是有两个优点:

  • 第一降低了商品服务的入侵性,
  • 第二数据的实时性更好。

所以使用数据订阅:

  • 优点:
    • 业务入侵较少
    • 实时性较好

至于数据订阅框架的选型,主流的大体上是这些:

CancalMaxwellPython-Mysql-Rplication
开源方阿里巴巴Zendesk社区
开发语言JavaJavaPython
活跃度活跃活跃活跃
高可用支持支持不支持
客户端Java/Go/PHP/Python/RustPython
消息落地Kafka/RocketMQ 等Kafka/RabbitNQ/Redis 等自定义
消息格式自定义JSON自定义
文档详略详细详细详细
Boostrap不支持支持不支持

注意,尼恩的100Wqps三级缓存组件架构实操中,也介绍了,这种架构,存在秒级延迟。

如果不允许有秒级延迟的场景,不能使用这种架构。

具体请参见 尼恩的100Wqps三级缓存组件架构实操。

方案五:冗余表的同步双写/异步双写

为什么要有冗余表

当t_order表达到500万条或2GB时需要考虑水平分表,进行水平分表需要根据某个列进行分割,假设根据userId分割。用户查询自己的订单携带着userId,因此能够定位到具体哪张表。

而商家查询者自己店铺的订单,没办法确定userId,只能访问一遍所有的分表再合并结果,效率非常低。

为了加快商家端的查询,可以冗余一份订单表,这份冗余表根据merchantId切分,商家访问冗余表,效率就很好。

这是引入冗余表的好处,坏处是我们要维护普通表和冗余表的数据一致。

冗余表的同步双写实现方案

在这里插入图片描述

更新t_order的操作要执行两次,一次更新普通表,一次更新冗余表,写两次。
优点:

  • 实现简单,由一次写变为两次写
  • 容易维护数据的一致性

缺点:

  • 代码冗余,第二次写跟第一次写的代码类似,而且每个更新的地方都要写两次
  • 请求处理时间变长
冗余表的异步双写实现方案:

在这里插入图片描述

更新请求过来,写一次数据库,再发送一条消息到消息中间件,返回响应。消费者拉取消息进行写操作。
优点:

  • 处理时间是单次写

缺点

  • 较复杂,引入了消息中间件
  • 不容易维护数据的一致性

方案六: ETL数据同步

在这里插入图片描述

一致性分为两种:

  • 增量一致性: 前面的的双写方案,主要是保持增量数据的一致性。

  • 全量一致性: ETL数据同步主要用于同步全量数据。

MySQL数据全量同步到Redis、MySQL同步到hbase、MySQL同步到es、或机房同步、主从同步等,都可以考虑使用elt工具。

什么是etl 工具呢?

ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

ETL是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。

常用的etl工具有: databus、canal (方案四用了这个组件,有etl 的部分功能)、otter 、kettle 等

下面以 databus为例,介绍一下。

Databus 是一个低延迟、可靠的、支持事务的、保持一致性的数据变更抓取系统。由 LinkedIn 于 2013 年开源。

Databus 通过挖掘数据库日志的方式,将数据库变更实时、可靠的从数据库拉取出来,业务可以通过定制化 client 实时获取变更并进行其他业务逻辑。

特点:

  • 多数据源:Databus 支持多种数据来源的变更抓取,包括 Oracle 和 MySQL。
  • 可扩展、高度可用:Databus 能扩展到支持数千消费者和事务数据来源,同时保持高度可用性。
  • 事务按序提交:Databus 能保持来源数据库中的事务完整性,并按照事务分组和来源的提交顺寻交付变更事件。
  • 低延迟、支持多种订阅机制:数据源变更完成后,Databus 能在毫秒级内将事务提交给消费者。同时,消费者使用D atabus 中的服务器端过滤功能,可以只获取自己需要的特定数据。
  • 无限回溯:对消费者支持无限回溯能力,例如当消费者需要产生数据的完整拷贝时,它不会对数据库产生任何额外负担。当消费者的数据大大落后于来源数据库时,也可以使用该功能。

再看看 Databus 的系统架构。

Databus 由 Relays、bootstrap 服务和 Client lib 等组成,Bootstrap 服务中包括 Bootstrap Producer 和 Bootstrap Server。
在这里插入图片描述

  • 快速变化的消费者直接从 Relay 中取事件;
  • 如果一个消费者的数据更新大幅落后,它要的数据就不在 Relay 的日志中,而是需要请求 Bootstrap 服务,返回的将会是自消费者上次处理变更之后的所有数据变更快照。

开源地址:https://github.com/linkedin/databus

从0到1, 百亿级数据存储架构,怎么设计?

从0到1, 百亿级数据存储架构,40岁老架构尼恩团队,计划用一个系列的文章帮大家实现这个架构难题,这个系列还会录成视频,并辅导大家写入简历。

这个系列包括:

  • 高并发搜索篇:从0到1, 从入门到 ElasticSearch 工业级使用
  • 100亿级任务调度篇:从0到1, 从入门到 XXLJOB 工业级使用
  • 100亿级海量存储篇:从0到1, 从入门到 HABSE 工业级使用
  • 100亿级离线计算篇:从0到1, 从入门到 Flink 工业级使用

已经发布的文章包括:

100亿级任务调度篇:从0到1, 从入门到 XXLJOB 工业级使用

说在最后:有问题找老架构取经

百亿级数据存储架构,一定是一个超级牛掰的简历亮点项目,黄金项目,稍微晚点把全量的架构方案和视频进行发布。

这个项目写入简历,面试的时候如果大家能对答如流,如数家珍,基本上 面试官会被你 震惊到、吸引到。

最终,让面试官爱到 “不能自已、口水直流”。offer, 也就来了。

在面试之前,建议大家系统化的刷一波 5000页《尼恩Java面试宝典》V174,在刷题过程中,如果有啥问题,大家可以来 找 40岁老架构师尼恩交流。

另外,如果没有面试机会,可以找尼恩来帮扶、领路。

  • 大龄男的最佳出路是 架构+ 管理
  • 大龄女的最佳出路是 DPM,

在这里插入图片描述

女程序员如何成为DPM,请参见:

DPM (双栖)陪跑,助力小白一步登天,升格 产品经理+研发经理

领跑模式,尼恩已经指导了大量的就业困难的小伙伴上岸。

前段时间,领跑一个40岁+就业困难小伙伴拿到了一个年薪100W的offer,小伙伴实现了 逆天改命

另外,尼恩也给一线企业提供 《DDD 的架构落地》企业内部培训,目前给不少企业做过内部的咨询和培训,效果非常好。

在这里插入图片描述

尼恩技术圣经系列PDF

  • 《NIO圣经:一次穿透NIO、Selector、Epoll底层原理》
  • 《Docker圣经:大白话说Docker底层原理,6W字实现Docker自由》
  • 《K8S学习圣经:大白话说K8S底层原理,14W字实现K8S自由》
  • 《SpringCloud Alibaba 学习圣经,10万字实现SpringCloud 自由》
  • 《大数据HBase学习圣经:一本书实现HBase学习自由》
  • 《大数据Flink学习圣经:一本书实现大数据Flink自由》
  • 《响应式圣经:10W字,实现Spring响应式编程自由》
  • 《Go学习圣经:Go语言实现高并发CRUD业务开发》

……完整版尼恩技术圣经PDF集群,请找尼恩领取

《尼恩 架构笔记》《尼恩高并发三部曲》《尼恩Java面试宝典》PDF,请到下面公号【技术自由圈】取↓↓↓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/329800.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Tensorflow卷积神经网络垃圾智能分类系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景与意义 随着城市化进程的加速,垃圾问题日益严重,垃圾分类成为解决这一问题的关…

(全面)Nginx格式化插件,Nginx生产工具,Nginx常用命令

目录 🎫 前言 🎉 开篇福利 🎁 开篇福利 x2 Double happiness # 介绍 # 地址 # 下载 💻 命令及解析 # 整个文件系统中搜索名为nginx.conf的文件 # 编辑nginx.conf文件 # 重新加载配置文件 # 快速查找nginx.conf文件并使…

Android和flutter交互,maven库的形式导入aar包

记录遇到的问题,在网上找了很多资料,都是太泛泛了,使用后,还不能生效,缺少详细的说明,或者关键代码缺失,我遇到的问题用红色的标注了 导入aar包有两种模式 1.比较繁琐的,手动将aar…

Linux应用入门(二)

1. 输入系统应用编程 1.1 输入系统介绍 常见的输入设备有键盘、鼠标、遥控杆、书写板、触摸屏等。用户经过这些输入设备与Linux系统进行数据交换。这些设备种类繁多,如何去统一它们的接口,Linux为了统一管理这些输入设备实现了一套能兼容所有输入设备的…

【真人Q版手办风】线稿手绘+ AI绘图 Stable Diffusion 完整制作过程分享

大家好,我是设计师阿威。 今天给大家分享一篇【真人Q版卡通手办】风格的制作过程,话不多说,进入正题。 成品预览 手绘线稿 首先,我使用的是老款手绘软件【SAI】,用[钢笔工具]进行了人物的线稿Q版描绘。&#x1f447…

最大负载1kg!高度模块化设计!大象机器人智能遥控操作机械臂组合myArm MC

引入 近年来,市面上涌现了许多类似于斯坦福大学的 Alopha 机器人项目,这些项目主要通过模仿人类的运动轨迹来进行学习,实现了仿人类的人工智能。Alopha 机器人通过先进的算法和传感技术,能够精确复制人类的动作,并从中…

二、使用Django创建一个基础应用

职位管理系统 - 建模 职位名称类别工作地点职位职责职位要求发布人发布日期修改日期 安装django pip install django5.0查看django版本 python -m django --version创建项目 django-admin startproject recruitment启动服务 python manage.py runserver 0.0.0.0:8000创建…

数据库|基于T-SQL创建数据库

哈喽,你好啊,我是雷工! SQL Server用于操作数据库的编程语言为Transaction-SQL,简称T-SQL。 本节学习基于T-SQL创建数据库。以下为学习笔记。 01 打开新建查询 首先连接上数据库,点击【新建查询】打开新建查询窗口, …

Vue3:封装Table 表格组件

组件官网 elementPlus : 点击跳转 封装组件 创建新的组件文件: Table.vue <!-- PropTableS &#xff1a; 父组件传递过来的数据 (对象)PropTableS.tables : 父组件传递的对象中 存放表格每行显示的数据PropTableS.keyS &#xff1a; 父组件传递过来的对象&#xff0c;里…

java集合类详解

目录 1、数组导入&#xff1a; 2、单列集合 List接口 1、ArrayList&#xff1a;数组列表 ArrayList类中的方法 2、LinkedList&#xff1a;链表列表 3、Vector&#xff1a;数组列表 4、list集合的遍历 1、for循环遍历 2、增强for循环 3、迭代器遍历 Set接口 1、Has…

React渲染流程

在 React 渲染分为两个阶段&#xff0c;Render 和 Commit&#xff0c;Render 是修改 React 组件的状态&#xff0c;把需要更新的组件标记为待更新&#xff0c;在 Commit 阶段将待更新的组件进行渲染并最终更新到浏览器的 Dom 树中。 Render 阶段是可以并执行操作的&#xff0c…

vue3项目+TypeScript前端项目 ———— elemnet-plus,svg图标配置,sass,mock数据

一.集成element-plus 官网地址 安装 pnpm install element-plus 引入 // main.ts import { createApp } from vue import ElementPlus from element-plus import element-plus/dist/index.css import App from ./App.vueconst app createApp(App)app.use(ElementPlus) app.…

JAVA基础面试题(第十三篇)线程并发死锁等!

线程死锁并发 1. 线程和进程有什么区别&#xff1f; 线程具有许多传统进程所具有的特征&#xff0c;故又称为轻型进程(Light—Weight Process)或进程元&#xff1b;而把传统的进程称为重型进程(Heavy—Weight Process)&#xff0c;它相当于只有一个线程的任务。在引入了线程的…

JetLinks物联网平台初步使用——TCP接入

基于上一篇&#xff0c;完整的搭建了前后端整个系统&#xff0c;可以在windows 7完美的运行使用。 目录 1、创建网络组件 2、创建协议管理 3、创建网关 ​4、创建产品 ​5、创建设备 6、模拟对接 1、创建网络组件 进入平台后&#xff08;用户名密码都是admin&#xff…

GRPC服务使用

目标&#xff1a; 1.什么是GRPC服务&#xff1f; 2.安卓客户端怎么不熟GRPC服务&#xff1f; 3.怎么生成GRPC的java类&#xff1f; 一、什么是GRPC服务&#xff1f; GRPC 一开始由 google 开发&#xff0c;是一款语言中立、平台中立、开源的远程过程调用(RPC)系统。 支持长…

Android Webview加载pdf文件无法缩放问题

WebView设置开启页面缩放&#xff1a; settings webView.getSettings(); settings.setSupportZoom(true); settings.setJavaScriptEnabled(true); settings.setUseWideViewPort(true); settings.setLoadWithOverviewMode(true); settings.setBuiltInZoomControls(true); sett…

Matlab 2023b学习笔记1——界面认识

下载安装好Matlab后&#xff0c;可以看到如下界面&#xff1a; 可以看到&#xff0c;这时只有命令行窗口。我们在上方工具栏中选择“布局”—— “默认”&#xff0c;即可看到左右两边多出来了“当前文件夹”与“工作区”两栏。 一、当前文件夹界面 这个界面显示的是当前目录下…

常见应用流量特征分析

目录 1.sqlmap 1.常规GET请求 2.通过--os-shell写入shell 3.post请求 2.蚁剑 编码加密后 3.冰蝎 冰蝎_v4.1 冰蝎3.2.1 4.菜刀 5.哥斯拉 1.sqlmap 1.常规GET请求 使用的是sqli-labs的less7 &#xff08;1&#xff09;User-Agent由很明显的sqlmap的标志&#xff0c;展…

二叉数之插入操作

首先是题目 给定二叉搜索树&#xff08;BST&#xff09;的根节点 root 和要插入树中的值 value &#xff0c;将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 &#xff0c;新值和原始二叉搜索树中的任意节点值都不同。 注意&#xff0c;可能存在多种有效…

佩戴安全头盔监测识别摄像机

佩戴安全头盔是重要的安全措施&#xff0c;尤其在工地、建筑工程和工业生产等领域&#xff0c;安全头盔的佩戴对于工人的生命安全至关重要。为了更好地管理和监控佩戴安全头盔的情况&#xff0c;监测识别摄像机成为了一项重要的工具。监测识别摄像机可以通过智能技术监测并记录…