YOLOv10论文解读:实时端到端的目标检测模型

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【车辆检测追踪与流量计数系统】
49.【行人检测追踪与双向流量计数系统】50.【基于YOLOv8深度学习的反光衣检测与预警系统】
51.【危险区域人员闯入检测与报警系统】52.【高压输电线绝缘子缺陷智能检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

在这里插入图片描述
YOLOv9刚出才3个月时间,这就出YOLOv10了,感觉这YOLO版本更新速度真心有点快。照这样下去,感觉YOLOv100也不远了…小伙伴们觉得呢?
闲话不多说,下面让我们一起看看YOLOv10都有哪些亮点吧。

源码、翻译后的论文和原始论文都已打包好,获取方式见文末,供需要的小伙伴们学习。

摘要

本文介绍了一种新的实时端到端目标检测算法—YOLOv10。该算法在YOLO系列的基础上进行了优化和改进,旨在提高性能和效率之间的平衡。首先,作者提出了连续双分配方法,以实现NMS-free训练,从而降低了推理延迟并提高了模型的性能。其次,作者采用了全面的效率-准确性驱动的设计策略,对YOLO的各种组件进行了综合优化,大大减少了计算开销,并增强了模型的能力。实验结果表明,YOLOv10在各种模型规模下都取得了最先进的性能和效率表现。例如,YOLOv10-S比RT-DETR-R18快1.8倍,同时拥有更小的参数数量和FLOPs;与YOLOv9-C相比,YOLOv10-B的延迟减少了46%,参数减少了25%,但保持了相同的性能水平。

论文方法

方法描述

该论文提出了一种名为YOLO(You Only Look Once)的目标检测算法,它通过一次前向传递来同时预测多个目标框及其类别。该算法使用卷积神经网络作为特征提取器,并将图像划分为网格,每个网格负责检测其中包含的目标。该算法还采用了双标签分配策略,以避免子像素级别的后处理,并提出了一个一致的匹配度量,以优化两个分支之间的匹配。

方法改进

双标签分配

在这里插入图片描述

与一对一配对不同,一对多配对为每个真实标签分配一个预测标签,避免了后处理中的非极大抑制(NMS)。然而,它会导致弱监督,从而导致较低的准确度和收敛速度[75]。幸运的是,这种缺陷可以通过一对多配对进行补偿[5]。为了实现这一目标,我们在YOLO中引入了双标签分配来结合这两种策略的优点。具体来说,如上图所示,我们为 YOLO 添加了一个额外的一对一头部。它保留了一致的结构,并采用与原始的一对多分支相同的学习目标,但利用一对一匹配获得标签分配。在训练过程中,两个头与模型一起联合优化,允许骨干网络和脖子从一对多分支提供的丰富监督信号中受益。在推理过程中,我们丢弃一对多头,并使用一对一头进行预测。这使得 YOLO 能够端到端部署,而无需付出任何额外的推断成本。此外,在一对一匹配中,我们采用了顶部选择,实现了与匈牙利匹配[4]相同的性能,同时减少了额外的训练时间。

模型设计改进

在这里插入图片描述

在模型设计方面,该论文提出了以下几种改进:
轻量级分类头: 通过对分类头进行轻量化设计,可以减少计算成本,而不会显著影响性能。
空间通道解耦降采样: 该方法通过分离空间和通道维度上的操作,提高了信息保留率,从而实现了更高的效率和竞争力。
排名引导块设计: 该方法根据各个阶段的冗余程度,采用不同的基本构建块,以实现更高效的模型设计。
大核深度卷积和部分自注意力模块: 这些模块可以在不增加太多计算开销的情况下提高模型的表现力。

解决的问题

该论文提出的改进方法旨在提高YOLO算法的效率和准确性,以便更好地适应实际应用场景中的需求。通过采用双标签分配策略、一致的匹配度量以及轻量化的设计等手段,该算法能够在保持高准确性的前提下,大大降低计算复杂度,提高运行速度。此外,该论文还探索了大核深度卷积和部分自注意力模块等技术,进一步提升了模型的性能表现。

论文实验

实验细节

我们选择 YOLOv8 [20] 作为我们的基线模型,因为它在延迟准确度方面有很好的平衡,并且它可以在各种模型大小中使用。我们采用一致的双重分配来实现无 NMS 训练,并在此基础上进行整体效率准确率驱动的模型设计,从而带来了YOLOv10 模型。YOLOv10 和 YOLOv8 一样,也有 N / S / M / L / X 这样的变体。此外,我们还通过简单地增加 YOLOv10-M 的宽度比例因子推导出一个新的变体 YOLOv10-B。我们在相同从头开始训练设置[20, 59, 56]下验证了所提出的检测器。此外,所有模型的延迟都在遵循[71]的 T4 GPU 上以 TensorRT FP16 进行测试。

与最新技术对比

在这里插入图片描述
如表所示,我们的 YOLOv10 在各种模型规模上实现了最先进的性能和端到端延迟。我们首先比较了YOLOv10与我们的基线模型,即YOLOv8。在五个变体(N/S/M/L/X)中,YOLOv10 相比 YOLOv8 分别取得了 1.2%/1.4%/0.5%/0.3%/0.5% 的AP提升,参数减少了 28%/36%/41%/44%/57%,计算量减少了 23%/24%/25%/27%/38%,延迟降低了 70%/65%/50%/41%/37%。与其他 YOLO 模型相比,YOLOv10 还表现出对准确性和计算成本之间优越的权衡。具体来说,对于轻量级和小型模型,YOLOv10-N/S 比 YOLOv6-3.0-N/S 的 AP 高出 1.5 个单位,计算量少 2.0 倍。

在不同的模型规模中,YOLOv10 也显示出了最先进的性能和效率,这表明我们的架构设计的有效性。

模型分析

消融研究。我们在表2中展示了基于YOLOv10-S和YOLOv10-M的消融结果。可以观察到,我们的NMS免费训练与一致的双重分配显著减少了YOLOv10-S的端到端延迟4.63毫秒,同时保持了具有竞争力的性能AP为44.3%。此外,我们效率驱动的模型设计导致参数减少11.8M和计算量减少20.8GFlOPS,对于YOLOv10-M来说,延迟降低0.65毫秒,很好地显示了其有效性。此外,我们准确率驱动的模型设计在YOLOv10-S和YOLOv10-M上分别实现了1.8 AP和0.7 AP的显着改进,仅带来了0.18毫秒和0.17毫秒的延迟开销,这充分证明了它的优越性。
在这里插入图片描述

效率驱动模型设计分析实验

在这里插入图片描述
总的来说,本文的实验结果表明,YOLOv10在各种规模下都具有更好的性能和更高的效率,同时保持较高的准确率。此外,本文还提出了一些有效的改进措施,可以进一步提高模型的性能和效率。

论文总结

文章优点

本文针对YOLO系列模型在性能和效率方面的不足进行了深入研究,并提出了有效的解决方案。
作者采用了新颖的一对多标签分配策略来消除NMS操作,同时保持了较高的检测精度。
在模型架构方面,作者提出了一种全面的效率和准确性驱动的设计策略,包括轻量级分类头、空间通道分离下采样和排名引导块等设计,以提高模型的效率和准确性。
实验结果表明,作者提出的YOLOv10系列模型在计算效率和准确率方面均优于先前的先进检测器,具有很高的实用价值。

方法创新点

本文提出了一个新颖的一对多标签分配策略,可以消除NMS操作,从而提高了检测速度并减少了超参数的影响。
作者还提出了一种全面的效率和准确性驱动的设计策略,该策略涵盖了多个组件,包括轻量级分类头、空间通道分离下采样和排名引导块等设计,以提高模型的效率和准确性。

未来展望

本文提出的YOLOv10系列模型为实时端到端目标检测提供了一个新的选择,可以在计算效率和准确率之间取得更好的平衡。
未来的研究可以进一步探索如何优化YOLOv10系列模型的训练过程,以获得更高的准确性和更快的速度。
另外,也可以考虑将YOLOv10系列模型与其他先进的深度学习技术相结合,以实现更高级别的目标检测任务。

资料获取

关于YOLOv10源码、翻译后的论文以及原始论文都已打包好,供需要的小伙伴们学习,获取方式如下:
在这里插入图片描述

关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【YOLOv10】即可获取下载方式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/330797.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#【进阶】特殊语法

特殊语法、值和引用类型 特殊语法 文章目录 特殊语法1、var隐式类型2、设置对象初始值3、设置集合初始值4、匿名类型5、可空类型6、空合并操作符7、内插字符串8、单句逻辑简略写法 值和引用类型1、判断值和引用类型2、语句块3、变量的生命周期4、结构体中的值和引用5、类中的值…

C++笔试强训day32

目录 1.素数回文 2.活动安排 3.合唱团 1.素数回文 链接https://www.nowcoder.com/practice/d638855898fb4d22bc0ae9314fed956f?tpId290&tqId39945&ru/exam/oj 现将其转化为回文数(这里用字符串存储比较方便转化),然后判断是否为…

ASP.NET Core Identity框架介绍与使用

1 ASP.NET Core Identity框架 Identity (标识)框架:采用的是基于角色的访问控制策略(Role-Based-Controll-Access),内置了对用户、角色等表的管理以及相关的接口,支持外部登录、2FA等。 Identit…

构建数字未来:探索Web3在物联网中的新视角

引言 随着Web3时代的来临,物联网技术正迎来一场新的变革。在这个数字化时代,Web3所带来的技术创新将为物联网的发展开辟新的视角。本文将深入探讨Web3在物联网领域的应用,揭示其在构建数字未来中的重要性和影响。 Web3与物联网的融合 区块链…

Golang项目代码组织架构实践

Golang在项目结构上没有强制性规范,虽然这给了开发者很大的自由度,但也需要自己沉淀一套可行的架构。本文介绍了一种项目布局,可以以此为参考设计适合自己的 Golang 项目组织模式。原文: Golang Project Layout Go 有很多强制的或是约定俗成的…

如何运用多媒体,打造企业实力展示厅?

企业文化、产品是其长期发展的根本所在,为此越来越多的企业开始选择运用多媒体互动,来打造企业多媒体展厅的方式,对企业文化、品牌形象、产品进行推广宣传,并在多媒体互动装置的支持下,能让客户能够快速且全面的了解企…

【设计模式】JAVA Design Patterns——Converter(转换器模式)

🔍目的 转换器模式的目的是提供相应类型之间双向转换的通用方法,允许进行干净的实现,而类型之间无需相互了解。此外,Converter模式引入了双向集合映射,从而将样板代码减少到最少 🔍解释 真实世界例子 在真实…

cocos 写 连连看 小游戏主要逻辑(Ts编写)算法总结

cocos官方文档:节点系统事件 | Cocos Creator 游戏界面展示 一、在cocos编译器随便画个页面 展示页面 二、连连看元素生成 2.1、准备单个方块元素,我这里就是直接使用一张图片,图片大小为100x100,锚点为(0&#xff0…

【Linux-驱动开发】

Linux-驱动开发 ■ Linux-应用程序对驱动程序的调用流程■ Linux-file_operations 结构体■ Linux-驱动模块的加载和卸载■ 1. 驱动编译进 Linux 内核中■ 2. 驱动编译成模块(Linux 下模块扩展名为.ko) ■ Linux-■ Linux-■ Linux-设备号■ Linux-设备号-分配■ 静态分配设备号…

Unity Physics入门

概述 在unity中物理属性是非常重要的,它可以模拟真实物理的效果在unity中,其中的组件是非常多的,让我们来学习一下这部分的内容吧。 Unity组件入门篇总目录----------点击导航 Character Controller(角色控制) 说明:组件是Unity提…

运算符重载(上)

目录 运算符重载日期类的比较判断日期是否相等判断日期大小 赋值运算符重载赋值运算符重载格式赋值运算符只能重载成类的成员函数不能重载成全局函数用户没有显式实现时,编译器会生成一个默认赋值运算符重载,以值的方式逐字节拷贝 感谢各位大佬对我的支持…

微信小程序反编译/解包

微信小程序反编译/解包 环境与工具 操作系统:Windows 11 23H2 微信版本:3.9.10.19 Q:如何找到小程序文件位置? A:在微信的设置找到文件路径,小程序文件位于 \WeChat Files\Applet\。 Q:小程…

web前端的路径和Servlet注解开发

目录 在web前端的两种路径 绝对路径的两种写法 相对路径 相对路径进阶 使用注解开发Servlet 使用注解开发Servlet的注意事项 使用idea创建servlet模板 在web前端的两种路径 绝对路径的两种写法 1.带网络三要素 http://ip地址:端口号/资源路径 2.不带网络三要素 /资源路…

Ps:消失点滤镜 - 选区操作

Ps菜单:滤镜/消失点 Filter/Vanishing Point 快捷键:Ctrl Alt V 当在“消失点”滤镜中进行绘画或修饰以校正缺陷、添加元素或改进图像时,可使用选区提供帮助。 通过建立选区,可在图像中绘制或填充特定区域的同时采用图像中的平面…

Linux之单机项目部署

1、虚拟机(VMware)创建Linux系统 1.1、创建虚拟机 1.2、配置虚拟机IOS映射文件 1.3、虚拟机内部相关配置 等待加载即可,加载完后会弹出图形化界面,如图: 注意:一般我们做为管理员使用ROOT账号来操作&#x…

利用sql注入对某非法网站的渗透

本文仅用于技术讨论,切勿用于违法途径,且行且珍惜, 所有非经授权的渗透,都是违法行为 前言 这段时间一直在捣鼓sql注入,最近又通过一个sql注入点,成功进入某个非法网站的后台,拿到整个网站的…

力扣654. 最大二叉树

Problem: 654. 最大二叉树 文章目录 题目描述思路复杂度Code 题目描述 思路 对于构造二叉树这类问题一般都是利用先、中、后序遍历,再将原始问题分解得出结果 1.定义递归函数build,每次将一个数组中的最大值作为当前子树的根节点构造二叉树;…

动静态库

说明:使用动静态库,一般直接安装即可,其他使用方法了解即可 静态库 静态库(Static Library)是一种将代码和数据打包成一个单独的文件的库文件,主要用于编译时的链接,而不是运行时。静态库通常…

手撕算法|斯坦福大学教授用60页PPT搞定了八大神经网络

人工智能领域深度学习的八大神经网络常见的是以下几种 1.卷积神经网络(CNN): 卷积神经网络是用于图像和空间数据处理的神经网络,通过卷积层和池化层来捕捉图像的局部特征,广泛应用于图像分类、物体检测等领域。 2.循…

springcloud第4季 springcloud-gateway网关predict案例场景

一 predict案例场景 1.1 说明 本博客所有案例操作,都在上篇博客的基础上进行: springcloud第4季 springcloud-gateway网关的功能作用_cloud gateway干嘛的-CSDN博客 1.2 案例前提准备 1. 启动zipkin服务 2.启动consul服务 3.启动3个应用服务 二 …