堆结构知识点复习——玩转堆结构

        前言:堆算是一种相对简单的数据结构, 本篇文章将详细的讲解堆中的知识点, 包括那些我们第一次学习堆的时候容易忽略的内容, 本篇文章会作为重点详细提到。 

        本篇内容适合已经学完C语言数组和函数部分的友友们观看。

        

目录

什么是堆

建堆算法

向上调整算法

算法原理

如何计算parent

代码

向下调整算法

算法原理

寻找较小孩子 

代码

建堆

向下调整算法建堆

建堆过程

建堆的时间复杂度

向上调整算法建堆

建堆过程

建堆的时间复杂度


什么是堆

        首先来看什么是堆:

  • 堆在逻辑结构上是一种完全二叉树。
  • 堆的物理结构是数组。
  • 堆分为大根堆和小根堆。
  • 大根堆就是父亲节点大于左右孩子, 小根堆就是父亲节点小于左右父亲。

这里分析一个问题:堆相较于顺序表存不存在大量的空间浪费?

普通的二叉树如果使用数组来存储会出现大量的空间浪费。 但是堆是一颗完全二叉树, 完全二叉树就是除了叶子结点, 其他层上面的分支节点全都是满的。 而且叶子结点也全部是连续的, 这样的结构如果使用数组来存储就不会存在大量浪费的情况。 

逻辑结构的堆:

物理结构的堆:

建堆算法

建堆有两个算法:

  • 向上调整算法
  • 向下调整算法

向上调整算法

向上调整算法是从堆底向上调整。

向上调整算法的使用前提是:要向上调整的节点的前面的数组已经是一个堆。

算法原理

示例:

如图为一个小堆:

        1.现在插入一个0。那么这个0先插入在最后的位置。

         然后向上调整算法的过程就是:2.以刚刚插入的位置为child节点。 他的父亲为parent节点。 进行比较。

        3.比较child比parent小(注意, 现在是排的小堆, 小堆的父亲比左右孩子小), 那么就要向上调整一下, 让父亲变成0, child变成3。(这里如果不小的话, 就说明此时就是一个小堆, 那么就结束调整。结束算法)

        4.然后让child变成指向parent的节点。 parent指向当前节点的父亲节点。 

       5. 然后回到2, 重新循环.  直到遇到child不小于parent或者child已经是堆顶元素。如图:

此时child指向堆顶。 没有父亲节点, 也就不需要再进行向上调整。 

时间复杂度:

  • O(lgN)。

因为每次调整一下最坏的情况就是从堆底调整到堆顶。 对于一颗满二叉树(没写错, 就是满二叉树)来说, 有2 * h - 1 == N;   一棵满二叉树的高度是h == lg(N + 1)。所以它向上调整一次最坏的情况是调整lgN次(1被忽略)。那么对于完全二叉树来说, 比满二叉树还要少许多节点, 层数一样。 那么它的最坏调整次数也是lgN。所以时间复杂度就是lgN。 

如何计算parent

        假设有一个元素个数为6的小堆。
 

此时元素个数为6。 堆的物理结构就是:

从逻辑结构中我们可以看到对于3这个位置来说, 它的左右两个孩子的下标是5和6。 (5 - 1) / 2 == 2 ; (6 - 1) /   2 == 2;

对于图中的5节点来说,5的下标是1, 它的左右孩子的下标是3和4。 而 (3 - 1) / 2 == 1; (4 - 1)  / 2 == 1;

这里就有一个结论:

  • parent == (child - 1) / 2;

代码

//向上调正算法
void AdjustUp(int* arr, int n)   //arr是一个等待调整的数组, n是这个数组的大小。
{//要使用向上调整算法, 说明此时arr的前n - 1个元素是一个堆。 第n个元素是等待向上调整的元素。int child = n - 1;              //第n个元素的下标是n - 1。     int parent = (child - 1) / 2;   //算出parent的位置while (child > 0)               //如果child到了堆顶, 那么就没有父亲, 也就不用比了。{if (arr[child] < arr[parent]) {swap(&arr[child], &arr[parent]);child = parent;parent = (parent - 1) / 2;}else                        //如果孩子节点比父亲节点还大, 那么也不用比了, 此时就是个堆{break;}}
}

向下调整算法

算法原理

向下调整算法要求左右两棵子树都是堆, 然后以根节点为基准向下进行调整。 

示例:

        如图是一个数组

这个数组如果转化为堆的逻辑结构就是如图:

        观察逻辑结构, 我们很容易可以观察到9的左右两边都是小堆。符合向下调整算法的要求(如果左右两边有一边不是堆结构, 那么就不可以使用向下调整算法),向下调整算法的流程为:

        1.  定义parent指向9的位置。 child指向左右边小的那个节点。 因为这里1比5小, 所以指向1。

          2.  然后比较child和parent。 如果child小于parent。 那么就要交换位置, 否则退出循环, 算法结束。

        3.  交换数据之后移动指针, parent指向child指向的节点。 child指向当前节点的左右孩子中较小的那个。

        4.  然后重复2的操作。 一直到child大于parent或者查出数组的范围。退出循环, 算法结束.

时间复杂度

  • O(lgN)

       时间复杂度的计算和向上调整算法一样。 对于一个堆来说,最坏的情况就是从堆顶向下调整到堆底,那么调整次数就是树的高度次。 而树的高度的数量级是lgN级别。 所以时间复杂度就是O(lgN)。

寻找较小孩子 

        可以利用假设法寻找左右孩子中较小的那一个。       

        对于一个父亲节点, 它的左孩子的下标是child == parent * 2 + 1; 右孩子就是child == parent * 2 + 2;

假设过程如下:

  •      先假设左孩子是较小的那个孩子。
  •      然后, 就比较左孩子和右孩子
  •      如果右孩子比左孩子更小, 那么就让右孩子变成较小的那个孩子。

代码


//向下调整算法
void AdjustDown(int* arr, int n, int parent)  //arr是要调整的数组, n是要建堆数组的大小。 parent下调的基准点。
{int child = parent * 2 + 1;               //先假设孩子节点是父亲节点的左边while (child < n)                         {//如果右孩子更小, 那么就让child变成父亲节点的右边if (child + 1 < n && arr[child + 1] < arr[child]) child++;              if (arr[child] < arr[parent]) {swap(&arr[child], &arr[parent]);parent = child;child = child * 2 + 1;}else {break;}}
}

建堆

向下调整算法建堆

建堆过程

        向下调整建堆需要保证那个要调整的节点的左右子树都是堆。 所以我们进行向下调整建堆的时候要从堆底向堆顶建堆。 具体过程如下:

假设如图为要调整成为堆的数组的逻辑结构:

       我们首先要从堆底的第一个非叶子节点开始向下调整,就像下图的最右边的那个红框框。 从这个红框框中的非叶子节点开始向下调整。 从右向左, 先将这一层的非也节点全部调整为堆。 

       此时, 这一层往下都是堆结构, 那么我们就可以向上一层进行调堆。

 

 当我们调好红框框中的堆后, 就可以调绿框框的堆。 

 然后绿框框的堆调好之后我们就可以调以堆顶为基准的堆, 那么这整个数组就建堆完成。 

 

建堆的时间复杂度

        个人认为堆里面最难的一部分内容, 就是建堆的时间复杂度。 可能有的友友会说, 建堆的时间复杂度是O(N * lgN) 。 博主一开始也以为是O(N * lg N), 但是其实只有向上调整建堆是O(N * lgN)。 而向下调整建堆的时间复杂度其实是O(N)。 为什么? 这里其实用到了高中的错位相减法求时间复杂度。

        假设这是一个h层的树结构。

那么当我们建堆的时候。  从倒数第二层开始向下调整。假设一共h层。证明如下:

  • 第h - 1层有2 ^ (h - 2) 个节点, 每一个节点最多向下调整一次。 一共调整2 ^ (h - 2) * 1次。
  • 倒h - 2层有2 ^ (h - 3) 个节点, 每一个节点最多向下调整两次。 一共调整2 ^ (h - 3) * 2次。
  • 倒h - 3层有2 ^ (h - 4) 个节点, 每一个节点最多向下调整三次。 一共调整2 ^ (h - 4) * 3次。
  • …………
  • …………
  • …………
  • 第三层有2 ^ 2个节点, 每一个节点最多向下调整h - 3次。一共调整 2 ^ 2 * (h - 3)次。
  • 第二层有2 ^ 1个节点, 每一个节点最多向下调整h - 2次。 一共调整2 ^ 1 * (h - 2)次。
  • 第一层有2 ^ 0个节点, 每一个节点最多向下调整h - 1次。 一共调整2 ^ 0 * (h - 1)次。

这些次数加起来就是一个等差乘以等比类型的数列求和。

        T(h) == 2 ^ 0 * (h - 1) + 2 ^ 1 * (h - 2) + 2 ^ 2 * (h - 3) + …… + 2 ^ (h - 4) * 3 + 2 ^ (h - 3) * 2 + 2 ^ (h - 2) * 1

   2 * T(h) ==             2 ^ 1 * (h - 1) + 2 ^ 2 * (h - 2) + …… + 2 ^ (h - 4) * 4 + 2 ^ (h - 3) * 3 + 2 ^ (h - 2) * 2 + 2 ^ (h - 1) * 1;

        所以 :T(h) == - (h - 1) + 2 + 2 ^ 2 + 2 ^ 3 + …… + 2 ^ (h - 2) + 2 ^ (h - 1)

                           == 2 ^ h - h;

由完全二叉树的规则: N == 2 ^ h - 1; 将这个式子带入上面T(h)就能得到T(N) == N + 1 - lgN

由大O的渐进表示法可知, 时间复杂度为O(N)

代码:


void CreatHeap(int* arr, int sz) 
{for (int i = (sz - 1 - 1) / 2; i >= 0; i--)   //(sz - 1) / 2是第一个非叶节点。{//向下调整建堆AdjustDown(arr, sz, i);    //以i为基准, 最大下标为sz;}
}

向上调整算法建堆

建堆过程

向上调整建堆需要前面的数组为堆结构。 所以和向下调整建堆相反,它是从堆顶开始建堆。建堆过程需要从下标为0开始向后遍历进行向上调整建堆。 建堆过程如下:

如图为一树结构。 

对于这个结构。 我们要先从第一个堆顶位置开始向下调。

然后调第二个元素

再调第三个元素, 第四个元素……第n个元素。 依次类推。

建堆的时间复杂度

        我们同样使用前面的方法, 将每一层的节点的调整次数列出来。 如下:

  • 第一层:2 ^ 0节点, 调整0次
  • 第二层:2 ^ 1节点, 每个节点调整1次。一共调整2 ^ 1 * 1次。
  • 第三层:2 ^ 2节点, 每个节点调整2次。一共调整2 ^ 2 * 2次。
  • 第四层:2 ^ 3节点, 每个节点调整3次。 一共调整2 ^ 3 * 3次。
  • …………
  • …………
  • …………
  • 第h - 2层: 2 ^ (h - 3)节点, 每个节点调整h - 3次。 一共调整2 ^ (h - 3) * (h - 3)次。
  • 第h - 1层:2 ^ (h - 2)节点, 每个节点调整h -2次。 一共调整2 ^ (h - 2) * (h - 2)次。
  • 第h 层: 2 ^ (h - 1)节点, 每个节点调整h - 1次。 一共调整2 ^ (h - 1) * (h - 1)次。

       利用N == 2 ^h - 1代入可得最后一层节点个数大约为N / 2。(这其实也是满二叉树的性质。)

       所以我们只需要看第h层调整需要的节点个数, 因为对于一棵完全二叉树来说, 最后一层的节点个数相当于其所有节点个数的一半。 那么每个节点向上调整的次数都是lgN。 所以对于向上调整算法建堆的时间复杂度就是O(N * lgN)

代码:

void CreatHeap(int* arr, int sz) 
{for (int i = 0; i < sz; i++)  {//向上调整建堆AdjustUp(arr, i);    //以i为调堆最后一个元素}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/333358.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【吊打面试官系列】Java高并发篇 - ConcurrentHashMap 的并发度是什么?

大家好&#xff0c;我是锋哥。今天分享关于 【ConcurrentHashMap 的并发度是什么?】面试题&#xff0c;希望对大家有帮助&#xff1b; ConcurrentHashMap 的并发度是什么? ConcurrentHashMap 的并发度就是 segment 的大小&#xff0c;默认为 16&#xff0c; 这意味着最多同时…

算法刷题day54:搜索(一)

目录 引言一、池塘计数二、城堡问题三、山峰和山谷四、迷宫问题五、武士风度的牛六、抓住那头牛七、矩阵距离八、魔板 引言 针对于蓝桥杯&#xff0c;搜索问题还是非常之重要的&#xff0c;在省赛前深知暴搜的重要性&#xff0c;所以提前先把提高课的搜索一章给看了&#xff0…

单链表OJ题(课堂总结)

1.链表的带环问题 上图就是一个典型的带环链表 1.1如何判读链表是否带环&#xff1f; 最常见的方法就是利用快慢指针&#xff0c;快指针追加慢指针&#xff0c;当二者相等的时候即可判断链表带环 其实现的代码如下&#xff1a; bool hasCycle(struct ListNode*head) { s…

【爬虫软件】2024最新短视频评论区抓取工具

一、背景说明 1.0 采集目标 采集DOU音评论数据对引流截流和获客有很多好处。首先&#xff0c;通过分析DOU音评论数据&#xff0c;我们可以更好地了解用户对于产品或内容的喜好和需求&#xff0c;从而调整营销策略&#xff0c;吸引更多用户关注和点击。其次&#xff0c;评论数据…

小而美的前端库推荐

小而美&#xff0c;指的是“小即是美”的事物&#xff0c;这是马云在 2009年 APEC 中小企业峰会上首次提出的观点 &#x1f44d; 前端有很多小而美的库&#xff0c;接入成本很低又能满足日常开发需求 &#x1f389;

StringMVC

目录 一&#xff0c;MVC定义 二&#xff0c;SpringMVC的基本使用 2.1建立连接 - RequestMapping("/...") ​编辑 2.2请求 1.传递单个参数 2.传递多个参数 3.传递对象 4.参数重命名 5.传递数组 6. 传递集合 7.传递JSON数据 8. 获取url中数据 9. 传递文…

深度学习中的多GPU训练(Pytorch 20)

一 多GPU训练 下面详细介绍如何从零开始并行地训练网络&#xff0c;这里需要运用小批量随机梯度下降算法。后面我还讲介绍如何使用高级API并行训练网络。 我们从一个简单的计算机视觉问题和一个稍稍过时的网络开始。这个网络有多个卷积层和汇聚层&#xff0c;最后可能 有几个…

Android:将时间戳转换为本地时间格式

一、效果图 图1&#xff0c;中国的时间格式 图2&#xff0c;美国的时间格式 二、StringUtil.kt代码 import java.text.DateFormat import java.text.SimpleDateFormat import java.util.* object StringUtil {fun formatTimestamp(currentTime: Long): String {var sdf Si…

dolphinscheduler standalone安装

官方文档&#xff1a;https://dolphinscheduler.apache.org/en-us/docs/3.1.3/guide/installation/standalone 1.安装&#xff08;以放在/home为例&#xff09; 下载见&#xff1a;https://download.csdn.net/download/taotao_guiwang/89311365 tar -xvzf apache-dolphinsche…

美团Java社招面试题真题,最新面试题

如何处理Java中的内存泄露&#xff1f; 1、识别泄露&#xff1a; 使用内存分析工具&#xff08;如Eclipse Memory Analyzer Tool、VisualVM&#xff09;来识别内存泄露的源头。 2、代码审查&#xff1a; 定期进行代码审查&#xff0c;关注静态集合类属性和监听器注册等常见内…

C++ 数据结构算法 学习笔记(33) -查找算法及企业级应用

C 数据结构算法 学习笔记(33) -查找算法及企业级应用 数组和索引 日常生活中&#xff0c;我们经常会在电话号码簿中查阅“某人”的电话号码&#xff0c;按姓查询或者按字母排 序查询&#xff1b;在字典中查阅“某个词”的读音和含义等等。在这里&#xff0c;“电话号码簿”和…

nginx文件解析漏洞测试

环境条件:ubuntu14,已安装docker,docker pull ubuntu:14.04.5 一、Nginx配置 1、使用docker启动容器&#xff1a; docker run -itd --name ubuntu -p 8088:80 ubuntu:14.04.5 2、进入容器&#xff1a; docker exec -it ubuntu /bin/bash 3、然后使用以下语句安装相关环境…

(四)手把手教你内网穿透,实现外网主机访问内网服务器

背景&#xff1a;书接上回&#xff0c; 服务器的使用-CSDN博客 课题组成员都有自己的账号&#xff0c;且能通过内网访问服务器&#xff0c;进行远程连接了。我们知道内网中的主机可以访问公网的主机&#xff0c;反之不可以访问。那么如果课题组成员在家不在内网区域内&#x…

ai发展会不会带来企业的员工垄断呢

写代码写累了&#xff0c;写点个人不成熟的想法&#xff0c;作为记录 随着gpt-4o发布&#xff0c;可以预计的是&#xff0c;AI逐渐能够通过各种外接设备和传感器和真实世界实时交互。那么未来一个接上摄像头&#xff0c;键盘&#xff0c;音响&#xff0c;可移动身体的的AI还会…

如何注册Claude3?解决Claude3无海外手机号接收验证码的问题以及如何订阅Claude Pro

原文链接&#xff1a;如何注册 Claude3&#xff1f;解决 Claude3 无海外手机号接收验证码的问题以及如何订阅 Claude Pro 前言 Claude3已经出来有一段时间了&#xff0c;大家有没有体验过呢&#xff1f;不过从目前来看&#xff0c;Anthropic公司总共推出了3个模型&#xff1…

Jenkins安装 :AWS EC2 Linux

1 JDK11 install # 用的yum安装 # 压缩包安装&#xff0c;下载的jdk-11.0.22_linux-x64_bin.tar.gz在EC2解压&#xff0c;配置环境变量&#xff0c;运行jenkins的时候会报错$ yum -y list java-11* Available Packages java-11-amazon-corretto-devel.x86_64 …

用队列实现栈 用栈实现队列 设计循环队列

用队列实现栈 思路 栈的特点&#xff1a;后进先出 队列的特点&#xff1a;先进先出 使用两个队列实现栈&#xff1a; 我们可以使用两个队列&#xff0c;一个队列为&#xff1a;空队列&#xff0c;一个队列为&#xff1a;非空队列 当我们要出队列时&#xff1a; 将 size - …

多态

多态的概念 通俗来说&#xff0c;就是多种形态&#xff0c;具体点就是完成某个行为&#xff0c;当不同的对象去完成时会产生出不同的状态 多态的定义及实现 多态构成的条件 1、必须通过基类的指针或者引用调用虚函数 2、子类必须对基类的虚函数进行重写 虚函数 被关键字vi…

内网横向移动小补充 --->PTK

大家别急&#xff0c;我的基于资源的约束性委派攻击还在写&#xff0c;这个东西一时半会讲不清楚&#xff0c;所以我在这里先来补充一点横向移动以前没说好的东西&#xff01;&#xff01;&#xff01; 在更啦&#xff0c;别催啦~~~~ 还记得我之前在内网渗透里面讲过这个PTK&a…

2024.5.22 关于 SpringCloud —— Nacos 配置管理

目录 Nacos 配置统一管理 Nacos 配置热部署 Nacos 多环境配置共享 配置优先级 Nacos 配置统一管理 实例理解 我们想要利用 Nacos 在 user-service 的 application.yml 配置文件中新增配置项此处我们将新增配置日期格式为 yyyy-MM-dd HH:mm:ss下图为新增 Nacos 配置统一管理…