大模型效能工具之智能CommitMessage

01 背景

随着大型语言模型的迅猛增长,各种模型在各个领域的应用如雨后春笋般迅速涌现。在研发全流程的效能方面,也出现了一系列贯穿全流程的提效和质量工具,比如针对成本较高的Oncall,首先出现了高质量的RAG助手;在开发阶段的Copilot、Comate、Tabnine等辅助编程应工具;在测试阶段,也有缺陷检查、安全合规检查、智能Code Review等工具;哪怕在交付阶段,也有替代人工的自动化Agent…

当使用git commit提交代码时,需要写繁杂的CommitMessage,有时候写了后却不符合提交规范被hook,有时候还被CodeReview的同学点评写不到点上…智能CommitMessage就是这样一个小助手,帮你按照提交规范自动生成符合规范的CommitMessage。

以百度APP 的提交规范为例,规范包括提交类别、产品版本、需求卡片、变更摘要等,其中类别又包括:功能、更新、优化、提测、上车、Merge、FixBug等,手动抒写较为复杂。

按照CommitMessage的组合标准,可以分为两个部分:规范格式 + 变更摘要:

图片

CommitMessage组成部分

  • 普通摘要类:提交规范格式 + 变更摘要
  • FixBug类:提交规范格式 + 变更摘要(包括bug原因、影响、修复方式等)

其中运用大模型能力生成变更摘要部分,而提交规范格式及其他标签由个性化插件定制,即可对不同业务线/产品线可定制符合提交规范的CommitMessage。

智能CommitMessage的最终使用效果如下:查看原文

git aicommit 用法示例

下面就以智能CommitMessage为例,介绍下大模型效能工具开发流程,主要包括:

  • 简单的功能设计
  • 应用指标和模型评估指标
  • 大模型数据处理过程
  • 模型性能优化的几种方式

02 功能与设计

用户入口一:git aicommit

Git是高效便捷的版本控制系统,虽然百度APP移动端已经多仓库化,随着组件化进程的完善,有至少有一半的需求不需要跨仓库提交而使用Git。

用户入口二:mgit aicommit

MGit (https://github.com/baidu/m-git)是百度自研的一套开源的、基于Git的多仓库管理工具,针对多仓库的应用场景安全地、高效的管理多个Git仓库,在基础版本之上增加MGit插件即可扩展或者修改原命令。

对入口的基本要求:

  1. Git/MGit入口的使用不影响原有git/mgit commit功能的使用,只是能力扩展
  2. 保证Git和MGit的入口分离的同时,保证功能统一,低成本维护

处理方式:抽象实现共用模块git-aicommit,该模块由MGit插件和Git alias命令直接调用,开发语言选型ruby,便于 MGit 插件直接调用。

git-aicommit模块:提取所有提交仓库中Git暂存区内的变更内容,请求模型服务生成Commit Message。

  • MGit/Git入口,即用户使用入口,对于MGit插件可以参考MGit如何扩展(https://github.com/baidu/m-git);Git Alias按如下配置即可:
# 给 git 添加 Alias:git aicommit
$ git config --global alias.aicommit '!f() { ruby -e '''require "git-aicommit"; MGit::GitAICommit.run(ARGV);''' -- "$@"; }; f'
  • 个性化插件:提交规范的格式定制,任何不同的提交规范均可定制为独立的插件,详细参考下面自定义提交规范章节。
  • 模型服务:接受git-aicommit模块的请求,调用LLM生成CommitMessage摘要内容,加载对应的个性化插件生成最终的CommitMessage。

03 评估指标

管理学之父彼得·德鲁克说过:“If you can’t measure it, you can’t manage it.”。

度量指标对于模型选择、后续Prompt调优以及SFT都至关重要,因为它决定了优化的标准。

生成CommitMessage时,既需要理解变更的代码,也需要生成对应的摘要、评估影响等,生成式大模型适合此类任务,当前生成式大模型在市面上也百花齐放,经过综合评估使用成本(包括数据管理、部署运维、性能调优、Prompt和模型评估)、生成质量、安全风险等方面的考虑,我们选择了百度智能云千帆平台的ERNIE4(文心4)。

针对此类摘要任务,常用的度量指标有BLEU Score、ROUGE Score、BERT Score、PPL、MSE等,结合生成CommitMessage的任务特性,最终确定模型和产品的核心指标:

  • 模型性能指标:MSE(Mean Squared Error,均方误差),用于衡量生成的文本序列与参考CommitMessage的文本序列之间的语义相似度;
  • 用户使用指标:AR(Acceptance Rate,直接采纳率),也叫用户直接满足度,针对模型服务生成的CommitMessage,用户直接采纳的次数相对于总的使用次数的占比

均方误差MSE(Mean Squared Error)

参考CommitMessage的文本序列,指高质量的、简洁的、准确的、标准的CommitMessage,客观标准是至少包括:为什么修改(Why)、改了什么(What)、影响面(可选),主观标准是人工筛选并提取。

根据定义,计算MSE即计算两段文本的语义相似度差值,简单的分为如下三个步骤:

1.文本Embedding向量化:

  • 将两段文本转换为向量表示。大模型时代Embedding的方式太多太多了,这里依然直接选用了千帆的Embedding方式。

2.向量差异计算:

  • 计算两段文本的向量表示间的差异或距离时,我们选择使用余弦相似度;尽管欧几里得距离和马氏距离也是常用的方法,但针对CommitMessage这种长度不一致的向量时,余弦相似度表现更为准确。

3.均方误差计算:

  • 将差异或距离平方,然后计算平均值以得到均方误差。
  • 图片
  • 其中,xi 和 yi 是两段文本在第 i 个维度上的表示,n 是维度数量。

本文多次提交两个概念:

参考CommitMessage:可以是RD生成已提交入库的,也可以由大模型生成、经过人工标注的保证质量的CommitMessage,作为评估的标准yi

生成CommitMessage:由大模型生成的CommitMessage,评估输入的判定项xi

直接采纳率AR(Adoption Rate)

总的使用次数包括3个结果:

  • 直接采纳数 CA
  • 编辑采纳数 CE
  • 拒绝数 CR

图片

04 数据处理

大模型应用开发为了更好的性能(包括生成质量、效率、准确度、采纳率),数据处理的成本投入较高,通常占据整个应用开发投入的相当大的比例,有时甚至可能超过模型训练和调优的工作量。总之,有效和高效的数据处理是提升模型性能的关键因素,因此在项目计划和资源分配中应给予足够的重视和投入。

数据处理的目标就是管理(增删改/标查)好数据集,产物是各类数据集,数据集的最终应用场景是模型的性能优化(模型选择、Prompt优化、SFT),也就是说,如果不做性能优化,就可以不用做数据处理。

数据集与性能优化的关系如下:

  • 评估集,模型选择、Prompt调优、SFT后都需要评估集对本次调优进行评估,是否比之前的好,是否达到调优的效果
  • 训练集,指用于SFT的标注数据,根据特征从总数据集中筛选
  • 验证集,验证集是用来调整模型超参数,避免过拟合或欠拟合
  • 测试集,SFT后测试是否达到SFT的目的,比如针对某个异常case评估其泛化能力
  • 异常集,标注环节明确的低质量的CommitMessage数据,特别是大模型生成未被直接采纳的数据

这里介绍下大体的过程及其作用,细节不做展开:

  • 定义数据结构:模型数据(需求/bug卡片标题、变更数据)、参考CommitMessage、类别数据(是否bug、变更行、仓库数)、辅助分析数据(产品线、平台、作者、Topic)等
  • 数据采集:来源于:①线上模型服务生成的CommitMessage;②存量RD已提交入库的CommitMessage;③其他开源数据集
  • 数据清洗:去噪、去重等处理,确保数据的质量和可用性
  • 标注与注释:标注本条数据作为参考CommitMessage的质量,其他辅助分析信息
  • 分类与管理:抽样配比、过滤筛选、查看等

根据我们当前的数据体量,选择了Pandas(https://pandas.pydata.org/)作为数据处理工具,它对小规模数据和单机环境提供了够用的数据处理和分析功能。然而,随着数据体量的逐步增大,Spark(https://spark.apache.org/)将是一个不错的选择。

05 性能优化

性能优化的目标是提升性能指标,包括核心指标均方误差MSE和生成效率,进而提升用户直接采纳率AR,手段包括如下三种:

  • 停止标记(Stop Token),可提升生成效率
  • Prompt优化,可优化MSE指标和提升生成效率
  • SFT可优化MSE指标

5.1 停止标记

当模型对Prompt理解不完全时,容易生成多余的解释或注意事项等无效内容,生成更多的Token导致生成效率降低(生成效率与生成的Token长度直接相关),而所有Transformer模型中都设计有停止标记,比如智能CommitMessage里调用模型的输出是一个Markdown的json,以“%STOP%”结尾,可指定停止标识为“%STOP%”以提高生成效率。

5.2 Prompt优化

简单说Prompt优化就是设计和优化输入Prompts以获得期望的输出。看似一个简单的NLP任务,却又叫Prompt工程?因为需要让大模型更好的理解期望的需求,确实涉及多学科的知识,比如融合语言学、心理学、计算机科学、数据科学,也包括整套工程方法:系统设计、实验设计、质量控制、项目管理等等方面。智能CommitMessage里涉及的两个优化点:

  1. 限制输出内容,明确要求

CommitMessage调用模型的输出要求是Markdown的json,如果模型输出不是正常的json将导致解析异常,此时在Prompt中明确要求『请仅输出内容,不要做任何解释』可避免生成无效内容,提高生成效率和准确性。

  1. Few-shot

Prompt优化里有个优化在限制输出样式的情况下非常有效 --Few-shot,以示例让大模型理解并限制输出样式,要求输出一个Markdown 的多行的 json 数据,样例:

按以下格式输出CommitMessage,只是一个markdown的代码片段,包含在"```json" 和 "```"内,『请仅输出内容,不要做任何解释』:
```json
{"summary": string  // 少于30字的中文,简洁的、准确的描述Git Commit Message"reason": string  // 分析修复方式,详细描述这个bug出现的具体原因,可以引用代码,少于60字"fixup": string  // 分析修复方式,简洁、准确的描述修复方式,可以引用代码,少于30字
}
```

这里的样例不是一个标准的json格式(多行换行时缺少“,”),大模型可能按照该格式输出,也可能按照正确的json格式输出,所以存在一个异常问题的不确定性,可通过完善该Few-shot完全避免该问题:

按以下格式输出CommitMessage,只是一个markdown的代码片段,包含在"```json" 和 "```"内,『请仅输出内容,不要做任何解释』:
```json
{"summary": string,  // 少于30字的中文,简洁的、准确的描述Git Commit Message"reason": string,  // 分析修复方式,详细描述这个bug出现的具体原因,可以引用代码,少于60字"fixup": string  // 分析修复方式,简洁、准确的描述修复方式,可以引用代码,少于30字
}
```

这里有个类似的概念:Prompt Tuning,Few-shot 和 Prompt Tuning都是优化和调整大型语言模型输入提示的方法,但有着本质上的区别:

附上智能CommitMessage的部分Prompt(持续优化中):

通俗易懂的角色描述:基于需求描述和实现该需求的git diff变更代码,自动生成规范的git提交信息。 
需求描述的标题如下:{{%title}}git diff变更代码如下:
(DIFF-START)
{{%git_diff}} 
(DIFF-END)任务拆解
1.  解析需求标题: 
提取关键信息,如功能点、问题点等。
对文本进行清洗,去除无关字符和格式。
2.  分析git diff变更代码:
识别变更的文件和代码块。
分析代码变更的类型(如新增、修改、删除等)。
3.  生成Commit Message:
结合需求标题以及代码变更分析,编写Commit Message。 
确保提取的内容符合对应项的要求,如“summary: 少于30字的中文,简洁的、准确的描述Git Commit Message”等。
4.  验证Commit Message: 
检查Commit Message是否清晰、准确。
5.  按以下格式输出CommitMessage,只是一个markdown的代码片段,包含在"`json" 和 "`"内,『请仅输出内容,不要做任何解释』:
```json
{"summary": string  // 少于30字的中文,简洁的、准确的描述Git Commit Message
}
```%STOP%

5.3 SFT

因为文心4的模型能力已经有非常出色的生成能力,在这种大模型上做SFT成本非常高,所以一般会采用ERNIE-lite版本或者ERNIE-Speed版本,但是性能稍逊一筹,那如何保证在ERNIE-Speed版本中SFT后既能不降低整体性能,又能优化低质量case?

这里可以采用MoE(Mixture of Experts)的策略,用一个分类器来结合ERNIE4 + (ERNIE-Speed + SFT)各自的优势,即请求优先经过一个分类器,根据请求的特征进行分类请求ERNIE4或者经过SFT后的ERNIE-Speed模型,如下图示例:

部署前记得SFT评估数据集的全量评估,MSE优于线上保证本次SFT后的ERNIE-Speed模型比上次的更好。

SFT的全过程应该包含四个步骤:

  1. 确定目标:优化某个/某类低质量的数据case,微调后达到评估多少分值
  2. 数据准备:基于该case提取低质量case的特征,向数据集里筛选出训练集、验证集和测试集
  3. SFT过程:如上图所示
  4. 评估部署:根据抽样配比的评估集进行全量评估,保证本次SFT后的ERNIE-Speed模型比上次的更好

06 自定义提交规范

由于大模型只生成核心的变更摘要或者Fixbug的相关信息,而最终需要组合成各式各样的提交规范格式,所以可以将变化抽象为接口,可扩展python package实现接口达成自定义符合提交规范的CommitMessage,按需动态加载实现的插件。

抽象接口如下:

from abc import ABC, abstractmethodclass IPluginHook(ABC):"""插件实现的接口定义"""@abstractmethoddef hook_prepare(self, ctx):"""准备"""@abstractmethoddef hook_is_fix_bug(self, ctx) -> bool:"""是否fixbug的提交类型,默认false"""@abstractmethoddef hook_language(self, ctx) -> Language:"""生成语言,默认中文"""@abstractmethoddef hook_generate_variables(self, ctx):"""生成模板的变量"""@abstractmethoddef hook_generate_message(self, ctx) -> str:"""根据模板和变量,生成CommitMessage@warning: 该方法插件必须实现,否则将报出异常"""

加载某个插件的某个版本时,根据pkg_resources判定是已加载,然后配合 importlib进行import_module或者reload即可实现动态加载插件

def __install_plugin(pkg_name: str, version: str):"""安装插件"""subprocess.check_call([sys.executable, '-m', 'pip', 'install', f"{pkg_name}=={version}"])return __load_module(pkg_name, force=True)def __load_module(pkg_name: str, force: bool = False):"""加载module"""module_name = __module_name(pkg_name)loaded_module = sys.modules.get(module_name)if loaded_module is not None:if force:m = importlib.reload(loaded_module)importlib.reload(pkg_resources)return mreturn loaded_modulem = importlib.import_module(module_name)importlib.reload(pkg_resources)return m

07 未来

大模型对各类语言的代码理解上展现了卓越的能力,但对专有词汇、特定配置、固定格式等的理解依然存在不足,都需要合适的数据集来逐步优化;并且git diff获取的变更内容有限,受限于模型Token的限制,理解时缺少代码的上下文、依赖关系的关联导致生成质量存在瓶颈,结合RAG或许是一个较好的方式;使用入口的交互性、自定义提交规范都可以更AI,总之:AI Native 尚未成功,同志仍须努力。

——————END——————

参考资料:

[1] LangChain:https://www.langchain.com/

[2] git:https://git-scm.com/book/en/v2/Git-Basics-Git-Aliases

[3] pandas:https://pandas.pydata.org/

[4] Spark:https://spark.apache.org/

[5] 百度千帆:https://console.bce.baidu.com/qianfan/overview

[6] Prompt工程 大模型的应用与实践:https://zhuanlan.zhihu.com/p/668200325

推荐阅读:

基于afx透明视频的视觉增强前端方案

百度一站式数据自助分析平台(TDA)建设

浅析如何加速商业业务实时化

登录系统演进、便捷登录设计与实现

一文带你完整了解Go语言IO基础库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/333363.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java继承】(超级详细!!!)

【Java继承】(超级详细!!!) 1、 继承的概念2 、继承的语法3、 父类成员访问3.1 子类中访问父类的成员变量3.2 子类中访问父类的成员方法 4、 super关键字5 、子类的构造方法6、 继承关系上的执行顺序7、protected 关键…

华为机考入门python3--(31)牛客31-单词倒排

分类:字符串、正则 知识点: 正则提取所有符合的字符串 words re.findall(r[a-zA-Z], sentence) 列表倒序 words[::-1] 题目来自【牛客】 import re # 导入正则表达式模块def reverse_words(sentence):# 使用正则表达式将句子拆分成单词# 如可以将…

Xinstall地推效果大揭秘:洞察用户需求,创新营销策略不再是难题

在互联网流量红利逐渐衰退的今天,企业如何快速搭建起满足用户需求的运营体系,成为了亟待解决的问题。特别是在地推领域,如何在多变的互联网环境下,迅速、有效地触达用户,扩大目标用户基数和流量池,成为了企…

堆结构知识点复习——玩转堆结构

前言:堆算是一种相对简单的数据结构, 本篇文章将详细的讲解堆中的知识点, 包括那些我们第一次学习堆的时候容易忽略的内容, 本篇文章会作为重点详细提到。 本篇内容适合已经学完C语言数组和函数部分的友友们观看。 目录 什么是堆 建堆算法…

【吊打面试官系列】Java高并发篇 - ConcurrentHashMap 的并发度是什么?

大家好,我是锋哥。今天分享关于 【ConcurrentHashMap 的并发度是什么?】面试题,希望对大家有帮助; ConcurrentHashMap 的并发度是什么? ConcurrentHashMap 的并发度就是 segment 的大小,默认为 16, 这意味着最多同时…

算法刷题day54:搜索(一)

目录 引言一、池塘计数二、城堡问题三、山峰和山谷四、迷宫问题五、武士风度的牛六、抓住那头牛七、矩阵距离八、魔板 引言 针对于蓝桥杯,搜索问题还是非常之重要的,在省赛前深知暴搜的重要性,所以提前先把提高课的搜索一章给看了&#xff0…

单链表OJ题(课堂总结)

1.链表的带环问题 上图就是一个典型的带环链表 1.1如何判读链表是否带环? 最常见的方法就是利用快慢指针,快指针追加慢指针,当二者相等的时候即可判断链表带环 其实现的代码如下: bool hasCycle(struct ListNode*head) { s…

【爬虫软件】2024最新短视频评论区抓取工具

一、背景说明 1.0 采集目标 采集DOU音评论数据对引流截流和获客有很多好处。首先,通过分析DOU音评论数据,我们可以更好地了解用户对于产品或内容的喜好和需求,从而调整营销策略,吸引更多用户关注和点击。其次,评论数据…

小而美的前端库推荐

小而美,指的是“小即是美”的事物,这是马云在 2009年 APEC 中小企业峰会上首次提出的观点 👍 前端有很多小而美的库,接入成本很低又能满足日常开发需求 🎉

StringMVC

目录 一,MVC定义 二,SpringMVC的基本使用 2.1建立连接 - RequestMapping("/...") ​编辑 2.2请求 1.传递单个参数 2.传递多个参数 3.传递对象 4.参数重命名 5.传递数组 6. 传递集合 7.传递JSON数据 8. 获取url中数据 9. 传递文…

深度学习中的多GPU训练(Pytorch 20)

一 多GPU训练 下面详细介绍如何从零开始并行地训练网络,这里需要运用小批量随机梯度下降算法。后面我还讲介绍如何使用高级API并行训练网络。 我们从一个简单的计算机视觉问题和一个稍稍过时的网络开始。这个网络有多个卷积层和汇聚层,最后可能 有几个…

Android:将时间戳转换为本地时间格式

一、效果图 图1,中国的时间格式 图2,美国的时间格式 二、StringUtil.kt代码 import java.text.DateFormat import java.text.SimpleDateFormat import java.util.* object StringUtil {fun formatTimestamp(currentTime: Long): String {var sdf Si…

dolphinscheduler standalone安装

官方文档:https://dolphinscheduler.apache.org/en-us/docs/3.1.3/guide/installation/standalone 1.安装(以放在/home为例) 下载见:https://download.csdn.net/download/taotao_guiwang/89311365 tar -xvzf apache-dolphinsche…

美团Java社招面试题真题,最新面试题

如何处理Java中的内存泄露? 1、识别泄露: 使用内存分析工具(如Eclipse Memory Analyzer Tool、VisualVM)来识别内存泄露的源头。 2、代码审查: 定期进行代码审查,关注静态集合类属性和监听器注册等常见内…

C++ 数据结构算法 学习笔记(33) -查找算法及企业级应用

C 数据结构算法 学习笔记(33) -查找算法及企业级应用 数组和索引 日常生活中,我们经常会在电话号码簿中查阅“某人”的电话号码,按姓查询或者按字母排 序查询;在字典中查阅“某个词”的读音和含义等等。在这里,“电话号码簿”和…

nginx文件解析漏洞测试

环境条件:ubuntu14,已安装docker,docker pull ubuntu:14.04.5 一、Nginx配置 1、使用docker启动容器: docker run -itd --name ubuntu -p 8088:80 ubuntu:14.04.5 2、进入容器: docker exec -it ubuntu /bin/bash 3、然后使用以下语句安装相关环境…

(四)手把手教你内网穿透,实现外网主机访问内网服务器

背景:书接上回, 服务器的使用-CSDN博客 课题组成员都有自己的账号,且能通过内网访问服务器,进行远程连接了。我们知道内网中的主机可以访问公网的主机,反之不可以访问。那么如果课题组成员在家不在内网区域内&#x…

ai发展会不会带来企业的员工垄断呢

写代码写累了,写点个人不成熟的想法,作为记录 随着gpt-4o发布,可以预计的是,AI逐渐能够通过各种外接设备和传感器和真实世界实时交互。那么未来一个接上摄像头,键盘,音响,可移动身体的的AI还会…

如何注册Claude3?解决Claude3无海外手机号接收验证码的问题以及如何订阅Claude Pro

原文链接:如何注册 Claude3?解决 Claude3 无海外手机号接收验证码的问题以及如何订阅 Claude Pro 前言 Claude3已经出来有一段时间了,大家有没有体验过呢?不过从目前来看,Anthropic公司总共推出了3个模型&#xff1…

Jenkins安装 :AWS EC2 Linux

1 JDK11 install # 用的yum安装 # 压缩包安装,下载的jdk-11.0.22_linux-x64_bin.tar.gz在EC2解压,配置环境变量,运行jenkins的时候会报错$ yum -y list java-11* Available Packages java-11-amazon-corretto-devel.x86_64 …