【python】python商家会员数据分析可视化(源码+数据集+课程报告论文)

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


python商家会员数据分析可视化(源码+数据集+课程报告论文)


目录

  • python商家会员数据分析可视化(源码+数据集+课程报告论文)
  • 一、数据处理清洗
    • 1. 数据读取与准备
    • 2. 距离计算
    • 3. 任务吸引力分析
  • 二、数据可视化


一、数据处理清洗

1. 数据读取与准备

从两个Excel文件中提取所需的数据。这包括任务的GPS坐标、会员的GPS坐标和会员的信誉值。使用pandas库读取Excel文件是因为它提供了强大的数据处理功能,可以轻松处理大量数据,并且支持多种数据操作,如筛选、排序和聚合,这对后续的数据分析至关重要。
在这里插入图片描述

2. 距离计算

设计中核心的部分是计算任务地点和会员位置之间的地理距离。距离计算使用了地球上两点间的近似距离公式,这需要将纬度和经度转换为弧度,然后应用特定的地理计算公式。这一步骤关键在于准确和高效地处理数学运算。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “商会” 获取。👈👈👈

3. 任务吸引力分析

根据计算出的距离,进一步分析特定任务的吸引力。例如,统计在5公里范围内的会员数量,和这些会员的信誉值总和。这不仅涉及基本的条件筛选,也涉及到数据聚合。
在这里插入图片描述


二、数据可视化

首先,从Excel文件中读取了两组数据,一组是已结束项目任务数据,另一组是会员信息数据。为了处理这些数据,使用了pandas库来读取Excel文件并将数据存储在DataFrame中。这两个文件分别包含了任务的详细信息(包括任务编号、GPS坐标、标价和执行情况)和会员的详细信息(包括会员编号、位置、预订任务限额、预订任务开始时间和信誉值)。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “商会” 获取。👈👈👈

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号tasks_df = pd.read_excel('已结束项目任务数据.xlsx', engine='openpyxl')
members_df = pd.read_excel('会员信息数据.xlsx', engine='openpyxl')

为了计算特定任务位置与所有会员位置之间的距离,定义了一个距离计算函数calculate_distance。该函数使用了地球表面的弧长公式,考虑了纬度和经度的变化,确保计算的准确性。然后,提取了特定任务(A0001和A0002)的GPS坐标,并计算了每个会员到这两个任务位置的距离。

def calculate_distance(lat1, lon1, lat2, lon2):phi1, phi2 = np.radians(lat1), np.radians(lat2)lambda1, lambda2 = np.radians(lon1), np.radians(lon2)delta = 111.199 * np.sqrt((phi1 phi2)  2 + ((lambda1 lambda2)  2) * np.cos((phi1 + phi2) / 2)  2)return delta

进行了两项具体的统计分析:计算任务A0001在5公里范围内的会员个数。计算任务A0002在5公里范围内所有会员的信誉值总和。
这些统计数据可以帮助了解不同任务的会员参与情况和信誉情况,从而更好地评估任务的完成质量和会员的分布情况。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “商会” 获取。👈👈👈

print(S_A0001)
print(S_A0002)print("A0001任务5公里范围内的会员个数:", A0001_Bnum)
print("A0002任务5公里范围内所有会员信誉值总和:", A0002_Bavg)

柱状图:展示了前15个任务的标价分布。
通过柱状图分析,可以直观地比较不同任务的标价,了解任务标价的整体分布情况。
在这里插入图片描述
散点图:展示了前15个会员的位置和信誉值。
通过散点图分析,展示了前15个会员的位置和信誉值,横轴和纵轴分别表示会员的纬度和经度,每个点的颜色代表对应会员的信誉值。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “商会” 获取。👈👈👈

在这里插入图片描述
直方图:展示了前10个任务的标价分布频率。
通过直方图分析,展示了前10个任务的标价分布频率,横轴表示任务标价的区间,纵轴表示每个标价区间内任务的数量。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “商会” 获取。👈👈👈

折线图:展示了前15个任务的标价变化趋势。
通过折线图分析,展示了前15个任务的标价变化趋势,横轴表示任务编号,纵轴表示任务标价。
在这里插入图片描述
饼状图:展示了任务执行情况的比例分布。
通过饼状图分析,展示了任务执行情况的比例分布,其中每个扇形代表不同任务执行情况的比例,直观地显示了已完成任务和未完成任务在总任务中的占比。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “商会” 获取。👈👈👈

玫瑰图:展示了前15个任务的标价在极坐标系下的分布。
通过玫瑰图分析,展示了前15个任务的标价在极坐标系下的分布,每个扇形的角度和半径分别表示任务的编号和标价。
在这里插入图片描述
箱线图:展示了前15个会员的信誉值分布情况。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “商会” 获取。👈👈👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/333395.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch之文本分析

文本分析基本概念 官网:Text analysis | Elasticsearch Guide [7.17] | Elastic 官网称为文本分析,这是对文本进行一直分析处理的方式,基本处理逻辑是为按照预先制定的分词规则,把原本的文档进行分割成多个小颗粒度的词项&#x…

每天五分钟深度学习框架pytorch:tensor张量的维度转换大全

本文重点 在深度学习中比较让人头疼的一点就是矩阵的维度,我们必须构建出符合神经网络维度的矩阵,只有将符合要求的矩阵放到神经网络中才可以运行神经网络,本节课程我们将学习以下tensor中维度的变化。 view和shape View和shape,这两个方法可以完成维度的变换操作,而且使…

如何在anaconda的环境下安装langchain

1、安装anaconda; 2、在终端上,输入: conda install langchain -c conda-forge Proceed ([y]/n)? y 输入:Y 3、安装完成后,输入: python -c "import langchain; print(langchain.__version__)&…

OpenBayes 一周速览|TripoSR 开源:1 秒即 2D 变 3D、经典 GTZAN 音乐数据集上线

公共资源速递 This Weekly Snapshots !5 个数据集: FER2013 面部表情识别数据集 GTZAN 音乐流派分类数据集 MVTec-AD 工业异常检测数据集 UCAS-AOD 遥感目标检测数据集 Oxford 102 Flowers 花卉图片数据集 3 个教程: Latte 全球首个开…

linux 查看csv文件,按指定列聚合 排序

在Linux中,你可以使用awk工具来查看CSV文件的内容,并按照指定的列进行聚合。awk是一种强大的文本处理工具,它可以处理文本文件中的数据,并根据条件执行相应的操作。 以下是一个示例,假设你有一个名为data.csv的CSV文件…

spring boot3整合邮件服务实现邮件发送功能

⛰️个人主页: 蒾酒 🔥系列专栏:《spring boot实战》 目录 内容概要 开通服务 依赖引入 配置属性 创建邮件发送工具类 测试 最近发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家…

linux 中 fd 申请和释放管理(两级 bitmap)

linux 中 fd 的几点理解_linux fd-CSDN博客 通过上边的文章,我们可以知道,在 linux 中,fd 有以下几点需要了解: (1)fd 表示进程打开的文件,是进程级别的资源,不是系统级别的资源 …

【机器学习300问】101、1x1卷积有什么作用?

卷积神经网络最重要的操作就是卷积层的卷积操作,之前文章中介绍过,卷积核filter往往都是3x3或者5x5什么的,但有一种非常特殊的卷积——1x1卷积。他在CNN中扮演着非常重要的角色。 一、通道维度的降维/升维 这是1x1卷积最显著的作用之一。通过…

【Redis】持久化操作详解

Redis 持久化操作详解 Redis 实现持久化的时候,具体是按照什么样的策略来实现的呢? Redis支持两种方式的持久化,一种是RDB方式、另一种是AOF(append-only-file)方式,两种持久化方式可以单独使用其中一种&…

网络原理-HTTP协议

HTTP协议 HTTP协议全称为超文本传输协议,除了能传输字符串,还能传输图片、视频、音频等。 当我们在访问网页的时候,浏览器会从服务器上下载数据,这些数据都会放在HTTP响应中,然后浏览器再根据这个HTTP响应显示出网页信息。 抓包 抓包工具本质上是一个代理工具,即我们将构造…

神秘山洞惊现AI绘画至宝Stable Diffusion残卷

最近听到不少大宗门纷纷发声:随着AI神器的现世“程序员职业将不复存在”,“设计师将要失业”。 至此,不少修士开始担忧起来,现出世的AI神器会不会取代掉我辈修士。 其实,至女娲天神创造人类以来,在这漫漫…

视频监控平台AS-V1000产品介绍:账户或用户数据的导入和导出功能介绍

目录 一、功能描述 (一)导入功能定义 (二)导出功能定义 二、用户数据的导入导出的作用 三、AS-V1000新版本的导出和导入功能介绍 (一)功能主界面 (二)导出功能 1、导出操作 …

基于Netty实现安全认证的WebSocket(wss)服务端

1.Netty服务端 服务端代码参考【基于Netty实现WebSocket服务端-CSDN博客】中的两种方式都可以;这里用的是第一种简单方式。 新增如下逻辑:添加SSLHandler SSLContext sslContext SslUtil.createSSLContext("JKS","D:\\workSpace\\day…

微信红包封面怎么弄?直接获取与自定义设计的2个教程

小伙伴们!微信红包封面是不是让你眼花缭乱,想要拥有一个属于自己的独特封面?微信红包封面怎么弄呢?今天,我们将为你带来2个简单易懂的教程,让你轻松获得红包封面,无论是直接获取还是自定义设计&…

网络其他重要协议(DNS、ICMP、NAT)

1.DNS DNS是一整套从域名映射到IP的系统 1.1 DNS背景 TCP/IP中使用IP地址和端口号来确定网络上的一台主机的一个程序,但是IP地址不方便记忆,例如我们想访问百度就会在浏览器中输入baidu.com而不是百度的IP地址。于是人们发明了一种叫主机名的东西, 是…

词条唤夜兽唤夜兽的养殖与护理 幻兽帕鲁 唤夜兽怎么获取 唤夜兽去哪里抓 crossover玩Steam游戏

唤夜兽在地图上没有出现,是唤冬兽和雷冥鸟共同培育出来的帕鲁。 ------------------------- 介绍: 帕洛斯群岛之守护神,拥呼唤黑夜之力。 其会于灾厄席捲大地之际腾空而起,唤来无尽暗夜,试图封印灾厄。 ---------…

【开源】加油站管理系统 JAVA+Vue.js+SpringBoot+MySQL

目录 一、项目介绍 论坛模块 加油站模块 汽油模块 二、项目截图 三、核心代码 一、项目介绍 Vue.jsSpringBoot前后端分离新手入门项目《加油站管理系统》,包括论坛模块、加油站模块、汽油模块、加油模块和部门角色菜单模块,项目编号T003。 【开源…

猫狗分类识别模型建立①数据标记

一、labelImg库说明 LabelImg是一款非常流行的图像标注工具,广泛用于机器学习和计算机视觉领域。以下是关于LabelImg的详细介绍: 主要功能和特点 1.图像标注 允许用户在图像中标注物体,选择特定区域,并为这些区域添加标签或类…

Python考试复习--day2

1.出租车计费 mile,waitmap(int,input().split(,)) if mile<3:money13wait*1 elif mile>3 and mile<15:money13(mile-3)*2.3wait*1 else:money1312*2.3(mile-15)*2.3*(10.5)wait*1 print({:.0f}.format(money)) 【知识点1】&#xff1a; map() 函数 【知识点1】&…

大模型效能工具之智能CommitMessage

01 背景 随着大型语言模型的迅猛增长&#xff0c;各种模型在各个领域的应用如雨后春笋般迅速涌现。在研发全流程的效能方面&#xff0c;也出现了一系列贯穿全流程的提效和质量工具&#xff0c;比如针对成本较高的Oncall&#xff0c;首先出现了高质量的RAG助手&#xff1b;在开…