K-means聚类算法详细介绍

目录

🍉简介

🍈K-means聚类模型详解

🍈K-means聚类的基本原理

🍈K-means聚类的算法步骤

🍈K-means聚类的优缺点

🍍优点

🍍缺点

🍈K-means聚类的应用场景

🍈K-means的改进和变体

🍉K-means聚类算法示例

🍈问题

🍍数据准备

🍍选择K值

🍍运行K-means聚类

🍍分析聚类结果

🍈完整代码实现

🍈代码解释


🍉简介

🍈K-means聚类模型详解

  • K-means聚类是一种常见且高效的无监督学习算法,用于将数据集分成K个簇(clusters)。本文将详细介绍K-means聚类的基本原理、算法步骤、优缺点以及应用场景。

🍈K-means聚类的基本原理

  • K-means聚类通过最小化样本到其所属簇中心的距离来实现数据的分组。具体而言,K-means的目标是将数据分成K个簇,并使每个簇中的数据点到其质心(centroid)的欧氏距离平方和最小。

假设我们有一个数据集${x_1, x_2, \ldots, x_n}$,其中每个数据点$x_i$是一个d维向量。我们需要将这些数据点分成K个簇${C_1, C_2, \ldots, C_K}$。K-means的优化目标可以表示为:

其中,$\mu_k$表示簇$C_k$的质心。

🍈K-means聚类的算法步骤

K-means聚类算法主要包括以下步骤:

  1. 初始化:随机选择K个数据点作为初始质心。
  2. 分配簇:对于数据集中的每个数据点,计算其到各个质心的距离,并将其分配到距离最近的质心所在的簇。
  3. 更新质心:对于每个簇,计算所有分配到该簇的数据点的平均值,更新该簇的质心。
  4. 重复:重复步骤2和3,直到质心不再发生显著变化,或者达到预设的迭代次数。

🍈K-means聚类的优缺点

🍍优点

  1. 简单易实现:K-means算法简单且容易理解和实现。
  2. 高效:时间复杂度为$O(n \cdot K \cdot t)$,其中n是数据点数量,K是簇的数量,t是迭代次数。
  3. 适用广泛:适用于很多实际问题,如图像分割、文档聚类等。

🍍缺点

  1. 需要预设K值:必须提前确定簇的数量K,且K值的选择对结果影响较大。
  2. 对初始质心敏感:初始质心的选择会影响最终结果,可能会陷入局部最优。
  3. 对噪声和异常值敏感:噪声和异常值可能会严重影响簇的结果。

🍈K-means聚类的应用场景

K-means聚类在实际中有广泛的应用,包括但不限于:

  1. 图像处理:如图像分割、颜色量化等。
  2. 市场营销:客户分群,根据消费行为将客户分成不同的群体。
  3. 文本处理:文档聚类,将相似的文档分在一起。
  4. 生物信息学:基因表达数据分析,将具有相似表达模式的基因分在一起。

🍈K-means的改进和变体

为了克服K-means的一些缺点,研究人员提出了许多改进和变体方法:

  1. K-means++:通过改进质心初始化过程,减少算法陷入局部最优的可能性。
  2. Mini-batch K-means:使用小批量数据进行训练,适用于大规模数据集。
  3. 谱聚类:结合图论和K-means,适用于非凸形状的簇。

🍉K-means聚类算法示例

  • 为了更好地理解K-means聚类算法在现实生活中的应用,我们将以一个具体的示例来演示其使用过程和效果。我们将使用K-means聚类算法对客户进行分群,以帮助企业进行市场营销策略的制定。

🍈问题

假设我们是一家电子商务公司,希望通过分析客户的购买行为,将客户分成不同的群体,以便进行有针对性的市场营销。我们拥有以下客户数据集:

  • 客户ID
  • 年龄
  • 年收入(以美元计)
  • 年消费额(以美元计)

🍍数据准备

首先,我们需要对数据进行预处理和标准化,因为不同特征的量纲可能会影响聚类效果。

import pandas as pd
from sklearn.preprocessing import StandardScaler# 创建示例数据集
data = {'CustomerID': [1, 2, 3, 4, 5],'Age': [25, 34, 45, 23, 35],'Annual Income (k$)': [15, 20, 35, 60, 45],'Spending Score (1-100)': [39, 81, 6, 77, 40]
}
df = pd.DataFrame(data)# 标准化特征
scaler = StandardScaler()
df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] = scaler.fit_transform(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])

🍍选择K值

通常情况下,选择K值可以通过“肘部法则”来确定。我们绘制不同K值下的SSE(误差平方和)曲线,选择拐点作为K值。

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt# 计算不同K值下的SSE
sse = []
for k in range(1, 11):kmeans = KMeans(n_clusters=k, random_state=0)kmeans.fit(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])sse.append(kmeans.inertia_)# 绘制肘部法则图
plt.figure(figsize=(8, 5))
plt.plot(range(1, 11), sse, marker='o')
plt.title('Elbow Method for Optimal K')
plt.xlabel('Number of clusters')
plt.ylabel('SSE')
plt.show()

假设通过肘部法则确定K值为3。

🍍运行K-means聚类

使用K-means算法对客户进行分群。

# 运行K-means聚类
kmeans = KMeans(n_clusters=3, random_state=0)
df['Cluster'] = kmeans.fit_predict(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])# 查看聚类结果
print(df)

🍍分析聚类结果

通过可视化和统计分析,我们可以更好地理解每个簇的特征。

# 可视化聚类结果
plt.figure(figsize=(8, 5))
plt.scatter(df['Annual Income (k$)'], df['Spending Score (1-100)'], c=df['Cluster'], cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 1], kmeans.cluster_centers_[:, 2], s=300, c='red')
plt.title('Customer Segments')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.show()

此外,我们可以查看每个簇的中心和簇内数据点的分布情况:

# 查看每个簇的中心
centroids = kmeans.cluster_centers_
print("Cluster Centers:\n", centroids)# 查看每个簇的样本数量
print(df['Cluster'].value_counts())

🍈完整代码实现

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt# 创建示例数据集
data = {'CustomerID': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],'Age': [25, 34, 45, 23, 35, 64, 24, 29, 33, 55],'Annual Income (k$)': [15, 20, 35, 60, 45, 70, 18, 24, 50, 40],'Spending Score (1-100)': [39, 81, 6, 77, 40, 80, 20, 60, 54, 50]
}
df = pd.DataFrame(data)# 标准化特征
scaler = StandardScaler()
df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] = scaler.fit_transform(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])# 计算不同K值下的SSE
sse = []
for k in range(1, 11):kmeans = KMeans(n_clusters=k, random_state=0)kmeans.fit(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])sse.append(kmeans.inertia_)# 绘制肘部法则图
plt.figure(figsize=(8, 5))
plt.plot(range(1, 11), sse, marker='o')
plt.title('Elbow Method for Optimal K')
plt.xlabel('Number of clusters')
plt.ylabel('SSE')
plt.show()# 根据肘部法则选择K值为3
k = 3# 运行K-means聚类
kmeans = KMeans(n_clusters=k, random_state=0)
df['Cluster'] = kmeans.fit_predict(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])# 查看聚类结果
print(df)# 可视化聚类结果
plt.figure(figsize=(8, 5))
plt.scatter(df['Annual Income (k$)'], df['Spending Score (1-100)'], c=df['Cluster'], cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 1], kmeans.cluster_centers_[:, 2], s=300, c='red', marker='x')
plt.title('Customer Segments')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.show()# 查看每个簇的中心
centroids = kmeans.cluster_centers_
print("Cluster Centers:\n", centroids)# 查看每个簇的样本数量
print(df['Cluster'].value_counts())

🍈代码解释

🍍导入必要的库

  1. pandas用于数据处理。
  2. numpy用于数值计算。
  3. StandardScaler用于标准化数据。
  4. KMeans用于K-means聚类。
  5. matplotlib用于数据可视化。

🍍创建示例数据集

  • 包含客户ID、年龄、年收入和消费评分。

🍍标准化特征

  • 使用StandardScaler将特征缩放到相同的尺度,以提高聚类效果。

🍍选择K值

  1. 使用肘部法则,通过计算不同K值下的SSE(误差平方和)来确定最佳K值。
  2. 绘制SSE随K值变化的曲线,选择拐点作为最佳K值。

🍍运行K-means聚类

  1. 使用确定的K值运行K-means算法,对客户进行分群。
  2. 将分群结果添加到数据集中。

🍍可视化聚类结果

  • 绘制聚类结果的散点图,使用不同颜色表示不同的簇,并标出每个簇的质心。

🍍查看聚类结果

  • 打印每个簇的中心坐标和每个簇的样本数量,以更好地理解每个簇的特征。

 

希望这些能对刚学习算法的同学们提供些帮助哦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/333529.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全局查询筛选器适用场景 以及各场景示例

EF Core中的全局查询筛选器(Global Query Filters)是一种强大的功能,可以在实体框架的DbContext级别为特定的EntityType设置默认的过滤条件。这些筛选器自动应用于所有涉及到相关实体的LINQ查询中,无论是直接查询还是通过Include或…

借助 CloudFlare 增强站点内容保护防采集

今天在一位站长的帮助下实测了 CloudFlare 增强站点内容保护实现防采集的功能,效果那是杠杠的,如果您的站点原创内容比较多的话,明月强烈建议试试 CloudFlare 这个内容保护,无论是 WordPress 、Typecho 都有非常好的效果,并且几乎没有任何误伤,搜索引擎爬虫蜘蛛更是不会影…

利用边缘计算网关的工业设备数据采集方案探讨-天拓四方

随着工业4.0时代的到来,工业设备数据采集成为了实现智能制造、提升生产效率的关键环节。传统的数据采集方案往往依赖于中心化的数据处理方式,但这种方式在面对海量数据、实时性要求高的工业场景时,往往显得力不从心。因此,利用边缘…

内存泄漏案例分享3-view的内存泄漏

案例3——view内存泄漏 前文提到,profile#Leaks视图无法展示非Activity、非Fragment的内存泄漏,换言之,除了Activity、Fragment的内存泄漏外,其他类的内存问题我们只能自己检索hprof文件查询了。 下面有一个极佳的view内存泄漏例子…

数据结构——不相交集(并查集)

一、基本概念 关系:定义在集合S上的关系指对于a,b∈S,若aRb为真,则a与b相关 等价关系:满足以下三个特性的关系R称为等价关系 (1)对称性,aRb为真则bRa为真; (2)反身性,aRa为真; (3)传递性,aRb为真…

【程序员如何送外卖】

嘿,咱程序员要在美团送外卖,那还真有一番说道呢。 先说说优势哈,咱程序员那逻辑思维可不是盖的,规划送餐路线什么的,简直小菜一碟。就像敲代码找最优解一样,能迅速算出怎么送最省时间最有效率。而且咱平时…

“技术与管理并重:构建以等保测评为导向的全方位防御体系“

在数字化转型浪潮下,企业信息安全面临着前所未有的挑战。为了有效应对日益复杂的网络威胁,构建一个稳固的信息安全防线,技术手段与管理制度的有机结合显得尤为重要。本文将探讨如何以信息安全等级保护测评(等保测评)为…

【HUST】信道编码|基于LDPC码的物理层安全编码方案概述

本文对方案的总结是靠 Kimi 阅读相关论文后生成的,我只看了标题和摘要感觉确实是这么回事,并没有阅读原文。 行文逻辑:是我自己设定的,但我并不是这个研究领域的,所以如果章节划分时有问题,期待指出&#x…

音乐编曲软件哪个好用 studio one和fl studio哪个好

编曲软件的出现,打破了时间与空间的限制,使得创作者能随时随地进行音乐创作。随着信息时代的发展,使用编曲软件进行音乐创作已经成为业界主流。业内常用的有Cubsae、LogicPro、Studio One、Ableton live等,这次教程我将为大家解读…

云计算期末复习(1)

云计算基础 作业(问答题) (1)总结云计算的特点。 透明的云端计算服务 “无限”多的计算资源,提供强大的计算能力 按需分配,弹性伸缩,取用方便,成本低廉资源共享,降低企…

【全开源】填表统计预约打卡表单系统FastAdmin+ThinkPHP+UniApp

简化流程,提升效率 一、引言:传统表单处理的局限性 在日常工作和生活中,我们经常会遇到需要填写表单、统计数据和预约打卡等场景。然而,传统的处理方式往往效率低下、易出错,且不利于数据的统计和分析。为了解决这些…

OpenLayers6入门,OpenLayers实现在地图上拖拽编辑修改绘制图形

专栏目录: OpenLayers6入门教程汇总目录 前言 在前面一章中,我们已经学会了如何绘制基础的三种图形线段、圆形和多边形:《OpenLayers6入门,OpenLayers图形绘制功能,OpenLayers实现在地图上绘制线段、圆形和多边形》,那么本章将在此基础上实现图形的拖拽编辑功能,方便我…

如何使用Android NDK将头像变成“遗像”

看完本文的标题,可能有人要打我。你说黑白的老照片不好吗?非要说什么遗像,我现在就把你变成遗像!好了,言归正传。我想大部分人都用过美颜相机或者剪映等软件吧,它们的滤镜功能是如何实现的,有人…

Amazon云计算AWS之[7]内容推送服务CloudFront

文章目录 CDNCDN简介CDN网络技术 CloudFrontCloudFront基本概念 CDN CDN简介 用户在发出服务请求后,需要经过DNS服务器进行域名解析后得到所访问网站的真实IP,然后利用该IP访问网站。在这种模式中,世界各地的访问者都必须直接和网站服务器连…

统计计算四|蒙特卡罗方法(Monte Carlo Method)

系列文章目录 统计计算一|非线性方程的求解 统计计算二|EM算法(Expectation-Maximization Algorithm,期望最大化算法) 统计计算三|Cases for EM 文章目录 系列文章目录一、基本概念(一)估算 π \pi π(二&…

TS(TypeScript)中Array数组无法调出使用includes方法,显示红色警告

解决方法 打开tsconfig.json文件,添加"lib": ["es7", "dom"]即可。 如下图所示。

AWS安全性身份和合规性之Artifact

AWS Artifact是对您很重要的与合规性相关的信息的首选中央资源。AWS Artifact是一项服务,提供了一系列用于安全合规的文档、报告和资源,以帮助用户满足其合规性和监管要求。它允许按需访问来自AWS和在AWS Marketplace上销售产品的ISV的安全性和合规性报告…

探索k8s集群中kubectl的陈述式资源管理

一、k8s集群资源管理方式分类 1.1陈述式资源管理方式:增删查比较方便,但是改非常不方便 使用一条kubectl命令和参数选项来实现资源对象管理操作 即通过命令的方式来实 1.2声明式资源管理方式:yaml文件管理 使用yaml配置文件或者json配置文…

常见API(JDK7时间、JDK8时间、包装类、综合练习)

一、JDK7时间——Date 1、事件相关知识点 2、Date时间类 Data类是一个JDK写好的Javabean类,用来描述时间,精确到毫秒。 利用空参构造创建的对象,默认表示系统当前时间。 利用有参构造创建的对象,表示指定的时间。 练习——时间计…

Dalle2学习

Dalle2 mini有GitHub库并且有网页可以直接测试