西湖大学提出AIGC检测框架,精准识别AI撰写的文稿

近年来人工智能技术突飞猛进,尤其是大语言模型的出现,让AI具备了创作文章、小说、剧本等内容的能力。

AI代写,已经逃不过老师、编辑、审稿人的火眼金睛了。但让AI仅改写部分片段,就安全了么?

针对检测AI改写的片段,西湖大学发布了一种叫做"篡改文本片段检测"(PTD)的新方法,它能精确识别文本中哪些片段是由AI生成或改写的,让AI改写的文本无处遁形!

传统的AI文本检测通常只能判断整篇文章是否出自AI之手,但PTD可以更细粒度地定位到文章的特定片段。文章通过实验表明,即使AI擅长模仿人类的写作风格,经过训练的检测模型仍然能从上下文线索中识别出机器的"笔迹"。这一方法不仅在已知模型上取得了超过95%的识别准确率,在未知模型上的表现也令人惊喜。通过细致的统计和实验分析,研究者发现改写句子与原文及上下文存在显著差异,这为检测提供了重要线索。此外,该方法还能有效抵御各类对抗性攻击,为传统的AI文本检测模型保驾护航。这一研究为我们提供了透过AI改写文本的完美伪装,看清其中潜藏风险的利器。

这项研究引发了一个有趣的思考:在AI主导内容生产的时代,人类原创的价值何在?机器是否终将取代人类成为"创作者"?事实上,就像工业革命不会消灭手工艺人一样,AI也不太可能完全取代人类创作。相反,懂得利用AI辅助创作、提高效率的人,或许会在未来占据优势。无论如何,这项新技术为我们认识AI提供了新视角。

图片

论文题目:
Spotting AI’s Touch: Identifying LLM-Paraphrased Spans in Text

论文链接:
https://arxiv.org/pdf/2405.12689

  3.5研究测试:
hujiaoai.cn


4研究测试:
askmanyai.cn


Claude-3研究测试:
hiclaude3.com

AI作文泛滥,改写检测面临新挑战

随着ChatGPT、LaMDA等大语言模型技术的日益成熟,AI生成的文章正以惊人的速度在网络上传播。这些由AI编写的文章不仅语法通顺、逻辑严谨,甚至连行文风格都与人类写手难分伯仲。更令人担忧的是,不法分子开始利用AI改写技术,对现有的文章进行部分改写,快速生产"洗稿"内容,混淆视听。面对层出不穷的AI作文和改写作文,传统的人工智能生成文本检测方法往往力不从心,难以精准识别出篡改的部分。

图片

AI作文泛滥带来的问题不容小觑。首先,它对内容原创性构成了严重挑战。一些心存侥幸之人利用AI改写技术,对他人的劳动成果略作修改便冒充原创,侵犯了原作者的合法权益。其次,AI改写文章的过程缺乏必要的事实核查和伦理把关。机器并不能完全理解文章内容,盲目改写可能产生错误甚至有害的信息。更严重的是,别有用心之人可能利用这一漏洞,改写后大量传播虚假信息,给社会带来难以估量的危害。

此外,从技术角度来看,由ChatGPT等先进模型改写的文章较之传统AI作文而言,在语法、语义、逻辑等方面均有大幅提升,与人类写作更加接近。传统的基于文本统计特征的检测方法很难发挥作用。下图直观地对比了原始文本与改写文本的困惑度分布,两者难以区分。因此,针对性地检测AI改写文本,成为了当务之急。

图片

AI改写文章往往只对原文的局部进行修改,而非全篇重写。这为检测带来了新的思路。通过比较文章中每个句子与上下文的关系,有望识别出机器改写的痕迹。这种细粒度的检测有望揪出那些披着原创外衣的AI改写作文。然而,传统的文本检测方法大多将文章视为一个整体,很难做到逐句分析。这就要求我们从全新的角度审视这一问题,探索句子级别的检测新方案。

AI改写还呈现出不同的改写模式,给检测增加了难度。研究发现,AI改写可以分为两类:上下文无关改写和上下文相关改写。前者是在不考虑上下文的情况下,对目标句子进行改写。后者则会参考句子的上下文,生成与之更加贴合的改写内容。下图的数据表明,含有上下文线索的改写更难被检测出来。这对改写检测提出了更高的要求,需要深入理解句子与上下文的关联。

最后,AI改写检测任务还面临着模型泛化的挑战。目前大多数检测模型只在特定的数据集上进行训练和评估,对未知领域的文章和新型AI模型的检测能力有限。而且不同领域和不同模型生成的改写文章,检测难度差异显著。这就要求检测模型具备更强的泛化性,能够适应多变的应用场景。

图片

PTD:AI改写克星的诞生

面对AI改写泛滥的困境,我们迫切需要一位"英雄"来拯救内容生态。在众多研究者的不懈努力下,这位"英雄"终于诞生了,它就是PTD(paraphrased text span detection)框架。PTD犹如一束探照灯,能够穿透AI改写的重重迷雾,为我们找到真相。

PTD框架的独特之处在于它别具慧眼的"细粒度"视角。与以往将篇章视为一个整体的方法不同,PTD将目光聚焦在文章的每一个句子上。它仔细审视每个句子与上下文的关系,从中发现蛛丝马迹,识别出潜藏的AI之手。这种精细入微的分析,让AI改写无所遁形。

图片

PTD框架提供了两种利器:分类模型和回归模型。分类模型就像一位严谨的"判官",对每个句子做出"原创"或"改写"的裁决;而回归模型则像一位细致的"鉴定师",不仅判定改写,还能评估改写的程度。实验表明,分类模型在改写句判别上更胜一筹,而回归模型则在改写程度估计方面更具优势。如果将两者结合,就能发挥出"1+1>2"的奇效。这正是聚合型回归模型的独到之处,它融合了多种语言差异度量,从语法、语义、结构等多个维度对改写进行考量,做到了全方位无死角的检测。

为了让PTD在现实应用中大显身手,研究者们精心打造了一个名为PASTED的数据集。这个数据集就像是一个缩微版的内容江湖,囊括了人类写手和AI写手的多种文章,还有形形色色的改写版本。构建数据集的过程颇具匠心,研究者们先从真实的人类和AI写作语料中精选原始文章,然后再施以随机改写的"魔法",让原文的局部脱胎换骨,化身为改写版本。这种随机改写的方式让数据集更加贴近真实的改写场景。此外,研究者还精心设计了两种改写策略:上下文无关改写和上下文相关改写。前者是纯粹的句内改写,后者则会参考上下文,对局部做出调整。这两类数据的加入,让PASTED数据集更具全面性和挑战性。

下图展示了PTD框架的工作流程。首先,PTD会对输入的文章进行切分,获得一个个独立的句子。接着,每个句子都会被送入PTD模型进行推理和预测。分类模型和回归模型分别给出改写概率和改写程度。最后,我们将模型输出解读为直观的改写判定结果。值得一提的是,PTD模型在推理时会充分利用上下文信息。这就好比一位有经验的侦探,不仅要观察嫌疑人的言行,还要结合现场的种种线索,最终得出准确的判断。

图片

PTD的"蒙眼识狼"大挑战

在 PTD 框架问世之后,研究者们迫不及待地想要检验它的实力。于是他们精心策划了一场别开生面的"蒙眼识狼"大挑战。这场挑战中,PTD 模型将在 PASTED 数据集上接受全方位的考核,看它能否在层层迷雾中识别出真正的 AI 改写"狼"。

首先,研究者们让 PTD 模型在 PASTED 数据集的随机划分测试集上进行"自由演练"。这就像是一次"明面"的较量,PTD 模型对这部分数据并不陌生。果不其然,所有的 PTD 模型在这一环节中表现出色,AUROC 指标均超过 0.95,识别改写句的准确率高达 95% 以上。分类模型和回归模型更是各有千秋,前者在改写句判别上略胜一筹,后者则在改写程度估计上更为精准。聚合回归模型集百家之长,在多项指标上都取得了最佳表现。这一阶段的结果证明,PTD 模型在面对已知风格的改写时,有着出色的辨识能力。

图片

接下来,研究者们带来了真正的挑战——"蒙眼"测试。他们从 PASTED 之外另选了一批数据,由全新的语言模型和改写策略生成而成。这就好比让 PTD 模型在完全陌生的战场上"蒙眼"作战。尽管这些新数据不在 PTD 的训练范围内,但它仍然展现出了惊人的泛化能力。即便 AUROC 和准确率有所下降,但分类模型依然保持了 47.21% 的高准确率,而聚合回归模型在改写程度估计上也毫不逊色。这说明 PTD 模型并非只是机械地记忆训练数据,而是真正学会了辨别改写的一般规律。

下图进一步揭示了 PTD 在不同领域文本和生成模型上的稳健表现。尽管科技新闻、学术论文等文本对 PTD 而言是全新的领域,但它仍然能够从容应对。

图片

而下图则呈现了一个有趣的现象:随着篇章中改写句数量的增加,PTD 的识别成功率也随之提高。这说明篇章中改写痕迹越明显,就越容易被 PTD 捕捉到。

图片

除了"蒙眼"测试,研究者们还对 PTD 模型发起了一系列"奇袭",考验它应对各种对抗性攻击的能力。他们尝试对文章做一些局部的、细微的修改,比如调换个别句子的顺序,或者替换个别词汇,看这些微小的变化能否骗过 PTD 的法眼。然而 PTD 模型并没有轻易上当,而是表现出了超强的抗干扰能力。实验表明,PTD 模型能够明辨句序调换带来的差异,也不会将个别词汇替换等同于全句改写。这些结果无疑让我们对 PTD 模型的鲁棒性充满信心。

图片

"蒙眼识狼"大挑战的系列实验充分展示了 PTD 框架的强大实力。无论是面对已知领域还是未知领域,PTD 都能保持高度的识别精准度。无论是应对常规输入还是对抗性攻击,PTD 都展现了超凡的鲁棒性。这些结果有力地证明了 PTD 作为一种创新的 AI 改写检测范式,有望在未来的内容生态治理中发挥重要作用。它将成为守护原创内容的有力武器,让那些披着原创外衣的 AI "狼"无处遁形。

总结与展望

PTD框架的诞生,为AI改写检测开辟了一条崭新的道路。它独特的句子级分析视角、灵活的预测方式以及惊人的泛化能力,共同铸就了这一AI改写克星的风采。在PASTED数据集的试炼中,PTD模型以出色的表现证明了自己的实力,展现了辨别改写真伪的非凡智慧。

PTD框架的意义远不止技术层面。它为探索AI与内容生态的平衡之道提供了新的视角。通过精准识别AI改写,PTD在维护原创内容版权的同时,也为AI写作划定了合理边界,为化解人机对立、实现共生共荣提供了一种可能。

展望未来,PTD框架必将在守护内容生态中扮演越来越重要的角色。随着AI技术的飞速发展,PTD也需要不断进化、与时俱进,成为真正的AI改写终结者。让我们携手并进,以开放和创新的姿态拥抱未来,共同开创内容生态的新纪元。PTD将是这场征程中最可靠的伙伴和最坚实的后盾。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/335324.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

整理了六个正规靠谱的兼职赚钱软件,适合普通人做的兼职副业~

​随着互联网时代的到来,越来越多的人选择通过互联网赚钱。在这篇文章中,我们将探讨一些可以在网上长期赚钱的方法。 在网络上面其实有很多的赚钱方法,尽管方法很多,但是对于一些网络新手,刚进入互联网圈子不久的伙伴…

ES升级--04--SpringBoot整合Elasticsearch

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 SpringBoot整合Elasticsearch1.建立项目2.Maven 依赖[ES 官方网站:https://www.elastic.co/guide/en/elasticsearch/client/java-rest/6.8/index.html](…

使用python绘制一个五颜六色的爱心

使用python绘制一个五颜六色的爱心 介绍效果代码 介绍 使用numpy与matplotlib绘制一个七彩爱心! 效果 代码 import numpy as np import matplotlib.pyplot as plt# Heart shape function def heart_shape(t):x 16 * np.sin(t)**3y 13 * np.cos(t) - 5 * np.cos…

【RabbitMQ】SpringAMQP--消息转换器

SpringAMQP–消息转换器 测试发送Object类型消息 1.声明队列 Configuration public class FanoutConfig {Beanpublic Queue objectQueue(){return new Queue("object.queue");} }运行消费者后: 2.发送消息 RunWith(SpringRunner.class) SpringBootTes…

POLARDB:新零售用户MySQL上云最佳选择

什么是云数据库POLARDB? POLARDB是阿里云自主研发的最新一代RDS关系型数据库,是特别针对互联网场景设计的Cloud-Native 云原生数据库。POLARDB for MySQL版本,在提供100%兼容MySQL5.6/8.0的关系型事务处理ACID特性之上,能够提供完…

如何让社区版IDEA变得好用

如何让社区版IDEA变得好用 背景 收费版的idea功能非常强大,但是收费;社区版的免费,但是功能被阉割了。如何才能让社区版Idea变得好用,一、打开项目前进行全局配置;二,寻求各种插件的支持。在经过全局配置…

迅睿CMS邮箱设置QQ邮箱为例

邮箱设置 1、服务器地址两个,普通与企业。 普通:ssl://smtp.qq.com企业:ssl://smtp.exmail.qq.com 2、端口号为:465 3、邮箱账号:填写自己的QQ邮箱作为发布服务器。 4、邮箱密码:到QQ邮箱账号中获取“…

Git学习篇

目录 使用命令导入项目 使用命令导入项目 1. 使用git init 命令初始化一个新的Git仓库。 git init 是 Git 命令,用于初始化一个新的 Git 仓库。当您想要开始跟踪一个新项目的版本控制时,可以运行 git init 命令来初始化一个空的 Git 仓库。 如果出现以下…

Windows电脑高颜值桌面便利贴,便签怎么设置

在这个看颜值的时代,我们不仅在衣着打扮上追求时尚与美观,就连电脑桌面也不愿放过。一张唯美的壁纸,几款别致的小工具,总能让我们的工作空间焕发出不一样的光彩。如果你也热衷于打造高颜值的电脑桌面,那么,…

用docker搭建的Vulfocus镜像管理界面没有镜像可以拉取解决办法

ps:截止到今天2023.4.2,kali和vps的docker拉取的vulfocus镜像会有版本的区别,虽然都是拉取的最新版,vps上镜像为3个月以前,kali上为16个月以前,所以在修改 views.py 文件时,可能会发现文件内容不…

国产化服务器开启NTP功能并向NTP时钟服务器同步

1.备份/etc/chrony.conf文件; cp -rp /etc/chrony.conf /etc/chrony.conf.bak.20240522 2.修改chrony.conf文件,增加NTP时钟信息。(客户端填写时钟同步服务器的IP地址或者域名,我这里写的IP地址。下面Allow NTP Client是只允许…

易备数据备份软件: 快速备份 MySQL\SQL Server\Oracle\泛微 OA 数据库

易备数据备份软件支持对 SQL Server、Oracle、MySQL、PostgreSQL、MariaDB、泛微 OA 等数据库进行快速备份,备份过程不会对任何服务造成中断。 使用一份授权,可以备份无限量的数据库,不管数据库服务器是否在本机、本地网络、或是远程网络。可…

文心智能体平台 | 想象即现实

目录 文心智能体平台介绍平台简介通过平台能做什么平台的优势智能体介绍智能体类型AI 插件介绍 动手创建一个智能体访问平台并进行账号注册根据适合的方式选择智能体类型快速创建智能体智能体个性化模块配置 总结注意事项我的智能体 文心智能体平台介绍 平台简介 文心智能体平…

1、C++编程概述

文章目录 一、基本概念二、数据的表示及运算计算机中数据表示进制间相互转化二进制计算规则 三、计算机数据的存储单位四、机器数和码制五、机器数运算机器数的加减运算机器数的乘除运算 面向对象编程语言把事物看成是具有属性和行为的对象,然后通过抽象找出属于同一…

共筑信创新生态:DolphinDB 与移动云 BC-Linux 完成兼容互认

近日,DolphinDB 数据库软件 V2.0 与中国移动通信集团公司的移动云天元操作系统 BC-Linux 完成兼容性适配认证。经过双方共同严格测试,DolphinDB 性能及稳定性等各项指标表现优异,满足功能及兼容性测试要求。 此次 DolphinDB 成功通过移动云 B…

AWS 高防和阿里云高防深度对比

随着网络攻击的不断增加,企业对于网络安全的需求也越来越高。在这种情况下,高防护服务成为了企业网络安全的重要组成部分。AWS和阿里云作为全球领先的云计算服务提供商,都提供了高防护服务,但它们之间存在着一些差异。我们九河云一…

如何让Google快速收录?

要让Google快速收录你的网站,可以考虑使用GSI服务,这是一种专门设计来加速网站被Google搜索引擎收录的服务,下面详细解释GSI服务的基本原理和具体好处: GSI服务通过一种名为GPC爬虫池的系统实现,这个系统是基于对Goog…

ABAP Json解析案例

ABAP解析返回的JSON 案例 DATA:LTOKEN TYPE STRING.DATA: LL_LINES(10),"行数LL_TABIX(10),"循环标号LL_PECNT TYPE P LENGTH 6 DECIMALS 2, "百分比LL_PECET(6),"百分数LL_TEXT(40)."消息CLEAR: LL_LINES,LL_TABIX,LL_PECNT,LL_PECET,LL_TEXT.* …

GPT-4o: 未来的智能助手

GPT-4o: 未来的智能助手 在这个信息爆炸的时代,人工智能(AI)已经成为我们生活中不可或缺的一部分。作为OpenAI最新推出的语言模型,GPT-4o不仅继承了前几代模型的优点,还在多个方面进行了显著的提升。本文将带你深入了解…

Win11有些exe双击后无反应的解决办法

现象 双击某些exe文件之后,小圆圈转了两下之后就消失,然后没任何反应。用回车反复启动也是一样的现象。 由于截图没法截图到鼠标,所以没法放出截图。 我电脑出现上述现象的软件有: 1.纸飞机调试助手 2.SOC Programming Tool 对…