[双指针] --- 快乐数 盛最多水的容器

 Welcome to 9ilk's Code World

       

(๑•́ ₃ •̀๑) 个人主页:       9ilk

(๑•́ ₃ •̀๑) 文章专栏:    算法Journey  


本篇博客我们分享一下双指针算法中的快慢指针以及对撞双指针,下面我们开始今天的学习吧~


🏠 快乐数

📒 题目解析

题目链接:202. 快乐数 - 力扣(LeetCode)

题目内容:

对于这道题,题中告诉了我们快乐数的定义,也就是说9对于一个正整数经过变换会进入两种循环:1.一种是一直循环12.另一种是不同数的循环

📒 算法原理

思路1  找规律

这个思路本人按照以往学数学的规律,发现不满足快乐数的会陷入4-16-37-58-89-145-42-20的循环当中

因此我们的思路是申请一块数组空间,当某个正整数变化到这个数组中的某个数时,说明不是快乐数;反之,一直变化都没出现这里面的数,变化到1停止,说明就是快乐数。

参考代码

class Solution
{
public:int squre(int n){int sum = 0 ;while(n > 0){sum += ((n%10)*(n%10));n /= 10;}return sum;}bool find(vector<int>& v1,int x){for(int i = 0 ; i < v1.size();i++){if(v1[i] == x)return true;}return false;}bool isHappy(int n) {if(n == 1)return true;vector<int> v1= {4,16,37,58,89,145,42,20};int sum = n;while(sum != 1){sum = squre(sum);if(find(v1,sum))return false;elsecontinue;   }return true;}
};

思路2 快慢指针

思路1属于投机取巧的做法,猜到就是赚到,万一猜不到呢?

我们由题目可知,这个正整数只有两种变化情况,有的朋友可能会想是否有可能不会进入循环一直变成不同的数呢?答案是不可能 !

证明过程:

1.鸽巢(抽屉)原理:如果有n个巢,n+1只鸽子,那么至少有一个巢的鸽数大于1.

2.对于这道题而言最大为21亿多( 2147483647),也就是最多有10个位,假设每一位都是9,即9999999999,那么经过一次变换就是9*9*10 = 810

3.int范围内每个正整数经过一次变化在[0,810]这个闭区间内,那么假设存在某个数经过810次变换后都是不同的数,但再变一次这个数一定是之前变换过程中的一个数,类比来看,这个闭区间就相当于"鸽巢",因此一定会进入循环!

既然只有两种情况,我们看到两种环是否感到熟悉,我们在解决链表是否带环问题,常用的解决方法就是快慢指针

这里我们要打破固有思维,我们要理解的是快慢指针的应用场景,在这里slow走一步相当于这个正整数变化一次,fast走两步,相当于这个正整数变化两次

总结快慢指针思路:slow变化一次,fast变化两次,通过判断他们相遇时(变化成的数相等时),这个数是否变化为1,为1则说明是快乐数;反之不是.

参考代码

class Solution {
public:int squre(int x){int sum = 0;while(x > 0){sum += ((x%10)*(x%10));x /= 10;} return sum;}bool isHappy(int n){int slow = squre(n);int fast = squre(squre(n));while(slow != fast){slow = squre(slow);fast = squre(squre(fast));}if(slow == 1){return true;}return false;}};

🏠 盛最多水的容器

📒 题目解析

题目链接:11. 盛最多水的容器 - 力扣(LeetCode)

题目内容:

这道题目简单来说就是让我们确定横坐标差值m以及纵坐标n,使得m*n最大

📒 算法原理

思路1 暴力求解

对于这道题我第一时间能想到的就是暴力求解套两个循环,定义一个max变量,不断比较更新max

class Solution {
public:int maxArea(vector<int>& height){int maxV = 0;for(int i = 0 ; i < height.size() ; i++){for(int j = i +1 ; j < height.size() ; j++){int row = j - i;int col = height[i] < height[j] ? height[i] : height[j];if(maxV < row*col)maxV = row*col;}}return maxV;}
};

但题目不给我们过O(N^2)的解法,需要另寻他路

思路2 对撞指针

发现规律:

假设在【6,2,3,4】这个区间,我们设横坐标值为m,纵坐标的值为n,则固定住4,4左边的数分别与4求体积我们会发现这样的一个规律:

结论:当区间左右端点值较小的值固定住后,不断逼近过程中,V一定是一定减小的,那么左右端点值形成的V就是这段区间中最大的!!

发现完这个规律,我们就可以避免了很多不必要情况的枚举,直捣黄龙取“最大”。

对撞指针:所谓对撞指针就是定义一个left指针和一个指针,分别指向容器的左右端,left和right分别向中间逼近,当left > right或 left == right时,停止遍历。

结合我们发现的规律以及对撞指针的原理,我们的代码思路就是left和right分别向中间逼近,比较left和right 位置对应位置的较小值固定 left / right,求出左右端点值对应的v;由发现的规律知,此时的v就是这个对应左右边界最大的v;接着移动left / right,继续下一个左右区间...直到left 和 right 相遇。

参考代码

class Solution {
public:int maxArea(vector<int>& height) {int left = 0;int right = height.size() - 1;vector<int> v1;while(left < right){int v = (right-left)*(height[left] < height[right] ? height[left] :height[right]);v1.push_back(v);cout << v << " left :"<<left << "right: "<< right << endl;if(height[left] < height[right]){left++;}else if(height[left] > height[right]){right--;}else{left++;}}int maxV = 0;for(int i = 0 ; i < v1.size();i++){if(v1[i]>maxV)maxV = v1[i];}return maxV;}
};


总结:本篇博客我们介绍了双指针算法中的快慢指针和对撞指针;快慢指针常用于解决“带环”问题,对撞指针需要我们先发现规律确定好对撞停止条件以及对撞指针更新的条件,一般适用于排除区间或查找某种条件是否成立的场景

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/336025.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LabVIEW中实现Trio控制器的以太网通讯

在LabVIEW中实现与Trio控制器的以太网通讯&#xff0c;可以通过使用TCP/IP协议来完成。这种方法包括配置Trio控制器的网络设置、使用LabVIEW中的TCP/IP函数库进行数据传输和接收&#xff0c;以及处理通讯中的错误和数据解析。本文将详细说明实现步骤&#xff0c;包括配置、编程…

分享10个我常逛的技术社区

多逛社区&#xff0c;了解新鲜的事情和技术&#xff0c;或许会有意想不到的观点给你灵感&#xff01; 国外技术交流网站合集&#xff08;30个类别&#xff09;的github地址: https://github.com/sdmg15/Best-websites-a-programmer-should-visit 这里收集了超过200个程序员应该…

K8s 小白入门|从电影配乐谈起,聊聊容器编排和 K8s

来听听音乐 电影&#xff0c;是我们生活中的重要调味剂。 配乐&#xff0c;是电影中不可或缺的一部分。 有的时候&#xff0c;配乐可以跟剧情共振&#xff0c;让你按捺不住自己的情绪&#xff0c;或眼含热泪、或慷慨激昂、或人仰马翻、或怅然若失&#xff1b; 有的时候&…

美团拼好饭小程序mtgsig1.2分析(补环境分析)

声明 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01;wx a15018601872 本文章未…

【AI绘画Stable Diffusion】单人LoRA模型训练,打造你的专属模型,新手入门宝典请收藏!

大家好&#xff0c;我是灵魂画师向阳 本期我将教大家如何进行LoRA模型训练&#xff0c;打造你的专属模型&#xff0c;内容比较干&#xff0c;还请耐心看完&#xff01; 随着AIGC的发展&#xff0c;许多传统工作岗位正逐渐被AI取代。同时&#xff0c;AI变革也在创造前所未有的…

【C++】---二叉搜索树

【C】---二叉搜索树 一、二叉搜索树概念二、二叉搜索树操作&#xff08;非递归&#xff09;1.二叉搜索树的查找 &#xff08;非递归&#xff09;&#xff08;1&#xff09;查找&#xff08;2&#xff09;中序遍历 2.二叉搜索树的插入&#xff08;非递归&#xff09;3.二叉搜索树…

三十三、openlayers官网示例Drawing Features Style——在地图上绘制图形,并修改绘制过程中的颜色

这篇讲的是使用Draw绘制图形时根据绘制形状设置不同颜色。 根据下拉框中的值在styles对象中取对应的颜色对象&#xff0c;new Draw的时候将其设置为style参数。 const styles {Point: {"circle-radius": 5,"circle-fill-color": "red",},LineS…

P2341 受欢迎的牛

题目描述 每一头牛的愿望就是变成一头最受欢迎的牛。现在有 N 头牛&#xff0c;给你 M 对整数&#xff0c;表示牛 A 认为牛 B 受欢迎。这种关系是具有传递性的&#xff0c;如果 A 认为 B 受欢迎&#xff0c;B 认为 C 受欢迎&#xff0c;那么牛 A 也认为牛 C 受欢迎。你的任务是…

UVa11604 General Sultan

UVa11604 General Sultan 题目链接题意分析AC 代码 题目链接 UVA - 11604 General Sultan 题意 给出一些0和1组成的模式串&#xff0c;问是否存在一个串使得有多种方案将这个串分解成模式串。    给一个包含n&#xff08;n≤100&#xff09;个符号的二进制编码方式&#xff…

基础—SQL—DQL(数据查询语言)基础查询

一、引言 1、介绍&#xff1a; 分类全称描述DQL英文全称&#xff1a;Data Query Language(数据查询语言)主要是学习对数据库表中的记录进行查询的语句 2、讲解 日常的开发中或者对于一个正常的业务系统中&#xff0c;对于查询的操作次数是远远多于数据的增删改的频次。例如…

Ansible自动化运维中的Setup收集模块应用详解

作者主页&#xff1a;点击&#xff01; Ansible专栏&#xff1a;点击&#xff01; 创作时间&#xff1a;2024年5月22日13点14分 &#x1f4af;趣站推荐&#x1f4af; 前些天发现了一个巨牛的&#x1f916;人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xf…

ABB 控制柜

1&#xff0c;主计算机&#xff1a;相当于电脑的主机&#xff0c;用于存放系统和数据&#xff0c;需要24V直流电才能工作。执行用户编写的程序&#xff0c;控制机器人进行响应的动作。主计算机有很多接口&#xff0c;比如与编程PC连接的服务网口、用于连接示教器的网口、连接轴…

揭秘网络编程:同步与异步IO模型的实战演练

摘要 ​ 在网络编程领域&#xff0c;同步(Synchronous)、异步(Asynchronous)、阻塞(Blocking)与非阻塞(Non-blocking)IO模型是核心概念。尽管这些概念在多篇文章中被广泛讨论&#xff0c;它们的抽象性使得彻底理解并非易事。本文旨在通过具体的实验案例&#xff0c;将这些抽象…

深入解析Web前端三大主流框架:Angular、React和Vue

Web前端三大主流框架分别是Angular、React和Vue。下面我将为您详细介绍这三大框架的特点和使用指南。 Angular 核心概念: 组件(Components): 组件是Angular应用的构建块,每个组件由一个带有装饰器的类、一个HTML模板、一个CSS样式表组成。组件通过输入(@Input)和输出(…

【Python】解决Python报错:TypeError: %d format: a number is required, not str

&#x1f9d1; 博主简介&#xff1a;阿里巴巴嵌入式技术专家&#xff0c;深耕嵌入式人工智能领域&#xff0c;具备多年的嵌入式硬件产品研发管理经验。 &#x1f4d2; 博客介绍&#xff1a;分享嵌入式开发领域的相关知识、经验、思考和感悟&#xff0c;欢迎关注。提供嵌入式方向…

.NET 直连SAP HANA数据库

前言 上个项目碰到的需求&#xff0c;IT部门要求直连SAP的HANA数据库&#xff0c;以只读的权限读取SAP部门开发的CDS视图&#xff0c;是个有点复杂的工程&#xff0c;需要从成品一直往前追溯到原材料的产地&#xff0c;和交货单、工单、采购订单有相当程度上的关联 IT部门要求…

会议管理系统(含源码+sql+视频导入教程)

&#x1f449;文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 会议管理系统拥有两种角色 管理员&#xff1a;部门管理、员工管理、会议管理、会议室管理、预订会议、添加员工、注册员工审批等 用户&#xff1a;个人通知中心、预订会议、查看所有会议…

错误记录:从把项目从Tomcat8.5.37转到Tomcat10.1.7

错误信息&#xff1a;在本地Servlet项目里没有报错&#xff0c;但是浏览器跳转该servlet时报错 型 异常报告 消息 实例化Servlet类[com.wangdao.lx.MyServlet1]异常 描述 服务器遇到一个意外的情况&#xff0c;阻止它完成请求。 例外情况 jakarta.servlet.ServletExceptio…

四川汇聚荣聚荣科技有限公司是正规的吗?

在当今社会&#xff0c;随着科技的飞速发展&#xff0c;越来越多的科技公司如雨后春笋般涌现。然而&#xff0c;在这个信息爆炸的时代&#xff0c;如何判断一家公司是否正规成为了许多人关注的焦点。本文将围绕“四川汇聚荣聚荣科技有限公司是否正规”这一问题展开讨论&#xf…

Spring框架学习笔记(五):JdbcTemplate 和 声明式事务

基本介绍&#xff1a;通过 Spring 框架可以配置数据源&#xff0c;从而完成对数据表的操作。JdbcTemplate 是 Spring 提供的访问数据库的技术。将 JDBC 的常用操作封装为模板方法 1 JdbcTemplate 使用前需进行如下配置 1.1 在maven项目的pom文件加入以下依赖 <dependencies…